Skip to main content
Log in

Features of Optical Activity in Inorganic and Organic Materials

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The possibilities of manifestation of optical activity in different media (photonic crystals, metamaterials, and liquid crystals) are considered. Some interesting examples of optically active crystals are demonstrated; particular attention is paid to the relationship between the optical activity and crystal structure. Examples of manifestation of optical activity in the X-ray spectral region are presented. Specific features of the optical activity of natural organic compounds, which are related to the asymmetry of their molecules, are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.

Similar content being viewed by others

REFERENCES

  1. A. F. Konstantinova, T. G. Golovina, and K. K. Konstantinov, Crystallogr. Rep. 59 (4), 447 (2014).

    Article  ADS  Google Scholar 

  2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  3. S. John, Phys. Rev. Lett. 58, 2486 (1987).

    Article  ADS  Google Scholar 

  4. T. N. Krylova, Interference Coatings (Mashinostroenie, Leningrad, 1973) [in Russian].

    Google Scholar 

  5. S. Kinoshita, S. Yoshioka, and J. Miyazaki, Rep. Prog. Phys. 71 (7), 076401 (2008).

    Article  ADS  Google Scholar 

  6. J.-P. Vigneron and P. Simonis, Phys. B: Condens. Matter 407 (20), 4032 (2012).

    Article  ADS  Google Scholar 

  7. V. S. Gorelik, Optics of Globular Photonic Crystals (FIAN, Moscow, 2006) [in Russian].

    MATH  Google Scholar 

  8. A. Di Falco, L. O’Faolain, and T. F. Krauss, Appl. Phys. Lett. 92 (8), 083501 (2008).

    Article  ADS  Google Scholar 

  9. P. Russell, Science 299 (5605), 358 (2003).

    Article  ADS  Google Scholar 

  10. K. Busch and S. John, Phys. Rev. E 58 (3), 3896 (1998).

    Article  ADS  Google Scholar 

  11. C. Zhang and D. E. Hirt, Polymer 48 (23), 6748 (2007).

    Article  Google Scholar 

  12. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals. Molding the Flow of Light, Second Ed. (Princeton Univ. Press, Princeton, 2008).

    MATH  Google Scholar 

  13. R. Tsu, Superlattice to Nanoelectronics, Second Ed. (Elsevier, London, 2011).

    Google Scholar 

  14. V. V. Rumyantsev, S. A. Fedorov, and M. V. Proskurenko, J. Optoelectron. Eng. 1 (1), 19 (2013).

    Google Scholar 

  15. V. V. Rumyantsev, S. A. Fedorov, and M. V. Proskurenko, Tech. Phys. 59 (10), 1499 (2014).

    Article  Google Scholar 

  16. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2010), p. 59.

    Book  Google Scholar 

  17. V. G. Veselago, Usp. Fiz. Nauk 92 (3), 517 (1967).

    Article  Google Scholar 

  18. Metamaterials Handbook, Vol. I: Theory and Phenomena of Metamaterials, Ed. by F. Capolino (CRC Press, Taylor and Francis Group, 2009).

  19. Metamaterials Handbook, Vol. II: Applications of Metamaterials (CRC Press, Taylor and Francis Group, 2009).

  20. Metamaterials: Physics and Engineering Explorations, Ed. by N. Engheta R. W. Ziolkowski (IEEE Press, Wiley, 2006).

  21. A. Boltasseva and V. M. Shalaev, Metamaterials 2 (1), 1 (2008).

    Article  ADS  Google Scholar 

  22. S. I. Maslovski, D. K. Morits, and S. A. Tretyakov, J. Opt. A: Pure Appl. Opt. 11, 074004 (2009).

    ADS  Google Scholar 

  23. K. Dietrich, C. Menzel, D. Lehr, et al., Appl. Phys. Lett. 104, 193107 (2014).

    Article  ADS  Google Scholar 

  24. M. Kuwata-Gonokami, N. Saito, Yu. Ino, et al., Phys. Rev. Lett. 95, 227401 (2005).

    Article  ADS  Google Scholar 

  25. M. V. Gorkunov, A. A. Ezhov, V. V. Artemov, et al., Appl. Phys. Lett. 104 (22), 221102 (2014).

    Article  ADS  Google Scholar 

  26. M. V. Gorkunov, V. E. Dmitrienko, A. A. Ezhov, et al., Sci. Rep. 5 (9273), 9273 (2015).

    Article  Google Scholar 

  27. A. V. Kondratov, Candidate’s Dissertation in Physics and Mathematics (Institute of Crystallography, Russian Academy of Sciences, Moscow, 2018).

  28. O. Yu. Rogov, Candidate’s Dissertation in Physics and Mathematics (Institute of Crystallography, Russian Academy of Sciences, Moscow, 2019).

  29. M. D. Turner, M. Saba, Q. Zhang, et al., Nat. Photonics 7 (10), 801 (2013).

    Article  ADS  Google Scholar 

  30. Y. Tang and A. E. Cohen, Phys. Rev. Lett. 104 (16), 163901 (2010).

    Article  ADS  Google Scholar 

  31. Y. Wang, J. Xu, Y. Wang, and H. Chen, Chem. Soc. Rev. 42 (7), 2930 (2013).

    Article  Google Scholar 

  32. S. A. Khakhomov, Extended Abstract of Doctoral Dissertation in Physics and Mathematics (Minsk, 2017).

  33. I. V. Semchenko, S. A. Khakhomov, M. A. Podalov, and S. A. Tret’yakov, Radiotekh. Elektron. 52 (9), 1084 (2007).

    Google Scholar 

  34. L. K. Vistin’ and I. G. Chistyakov, Liquid Crystals (Znanie, Moscow, 1975) [in Russian].

  35. A. P. Kapustin, Experimental Studies of Liquid Crystals (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  36. V. A. Belyakov, Diffraction Optics of Complex Structured Periodic Media (Springer, New York, 1992).

    Book  Google Scholar 

  37. V. A. Belyakov and A. S. Sonin, Optics of Cholesteric Liquid Crystals (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  38. S. A. Pikin and L. M. Blinov, Liquid Crystals (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  39. L. M. Blinov, Liquid Crystals: Structure and Properties (Librokom, Moscow, 2013) [in Russian].

    Google Scholar 

  40. S. P. Palto, L. M. Blinov, M. I. Barnik, et al., Crystallogr. Rep. 56 (4), 622 (2011).

    Article  ADS  Google Scholar 

  41. V. A. Kizel’, Usp. Fiz. Nauk 147 (3), 559 (1985).

    Article  Google Scholar 

  42. B. A. Umanskii and I. V. Simdyankin, Crystallogr. Rep. 64 (3), 437 (2019).

    Article  ADS  Google Scholar 

  43. I. J. Hodkinson, Q. H. Wu, L. De Silva, and A. Matthew, Phys. Rev. Lett. 91, 223903 (2003).

    Article  ADS  Google Scholar 

  44. J. Hwang, M.-H. Song, B. Park, et al., Nat. Mater. 4, 383 (2005).

    Article  ADS  Google Scholar 

  45. A. Safrani and I. Abdulhalim, Opt. Lett. 34, 1801 (2009).

    Article  ADS  Google Scholar 

  46. A. H. Gevorgyan, M. Z. Harutyunyan, K. B. Oganesyan, and M. S. Rafayelyan, Optics 123, 2076 (2012).

    ADS  Google Scholar 

  47. H. Coles and S. Morris, Nat. Photonics 4, 676 (2010).

    Article  ADS  Google Scholar 

  48. I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, Pis’ma Zh. Eksp. Teor. Fiz. 32 (1), 27 (1980).

    Google Scholar 

  49. S. M. Jeong, N. Y. Ha, Y. Takanishi, et al., Appl. Phys. Lett. 90, 261108 (2007).

    Article  ADS  Google Scholar 

  50. https://arxiv.org/vc/arxiv/papers/1406/1406.6855v1.pdf.

  51. S. Ya. Vetrov, I. V. Timofeev, and V. F. Shabanov, Usp. Fiz. Nauk 190 (1), 37 (2020).

    Article  Google Scholar 

  52. W. Voigt, Gottinger Nachriechten, 155 (1903).

  53. W. Voigt, Annal. Phys. 18 (14), 645 (1905).

    Article  ADS  Google Scholar 

  54. F. I. Fedorov, Theory of Girotropy (Nauka i Tekhnika, Minsk, 1976) [in Russian].

    Google Scholar 

  55. F. I. Fedorov, B. V. Bokut’, and A. F. Konstantinova, Kristallografiya 7 (6), 910 (1962).

    Google Scholar 

  56. E. L. Ivchenko, S. A. Permogorov, and A. V. Sel’kin, Pis’ma Zh. Eksp. Teor. Fiz. 27 (1), 27 (1978).

    Google Scholar 

  57. V. A. Kizel’ and V. I. Burkov, Gyrotropy of Crystals (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  58. P. Drude, Theory of Optics (London, Longmans, Green and Co., 1902).

    Google Scholar 

  59. M. Born, Optics (Springer, Berlin, 1933; GNTIU, Kiev, 1937).

  60. T. M. Lowry, Optical Rotatory Power (Longmans, London, 1935).

    Google Scholar 

  61. A. F. Konstantinova, Probl. Fiz., Mat. Tekh., No. 2(7), 75 (2011).

  62. G. N. Ramachandran, Proc. Indian Acad. Sci. 33, 217 (1951).

    Article  Google Scholar 

  63. A. M. Glazer and K. Stadnicka, J. Appl. Crystallogr. 19, 108 (1986).

    Article  Google Scholar 

  64. V. Devarajan and A. M. Glazer, Acta Crystallogr. A 42, 560 (1986).

    Article  Google Scholar 

  65. A. M. Glazer, J. Appl. Crystallogr. 35, 652 (2002).

    Article  Google Scholar 

  66. S. S. Batsanov, Structural Refractometry (Vysshaya Shkola, Moscow, 1976) [in Russian].

    Google Scholar 

  67. J. M. Bijvoet, A. F. Peerdeman, and A. J. Van Bommel, Nature 168, 271 (1951).

    Article  ADS  Google Scholar 

  68. H. D. Flack, Acta Crystallogr. A 39, 876 (1983).

    Article  Google Scholar 

  69. B. A. Maksimov, S. S. Kazantsev, V. N. Molchanov, et al., Crystallogr. Rep. 49 (4), 585 (2004).

    Article  ADS  Google Scholar 

  70. B. V. Mill’, A. V. Butashin, A. M. Ellern, and A. A. Maier, Izv. Akad. Nauk SSSR, Neorg. Mater. 17 (9), 1648 (1981).

    Google Scholar 

  71. A. A. Kaminsky, B. V. Mill’, and S. E. Sarkisov, Physics and Spectroscopy of Laser Crystals (Nauka, Moscow, 1986) [in Russian], p. 197.

    Google Scholar 

  72. B. A. Maksimov, V. N. Molchanov, B. V. Mill’, et al., Crystallogr. Rep. 50 (5), 751 (2005).

    Article  ADS  Google Scholar 

  73. A. F. Konstantinova, T. G. Golovina, and A. P. Dudka, Crystallogr. Rep. 63 (2), 200 (2018).

    Article  ADS  Google Scholar 

  74. A. V. Shubnikov, Principles of Optical Crystallography (Izd-vo AN SSSR, Moscow, 1958; Consultants Bureau, New York, 1960).

  75. Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  76. A. F. Konstantinova, B. N. Grechushnikov, B. V. Bokut’, and E. G. Valyashko, Optical Properties of Crystals (Nauka i Tekhnika, Minsk, 1995) [in Russian].

    Google Scholar 

  77. A. A. Kaminskii, B. V. Mill, G. G. Khodzhabagyan, et al., Phys. Status Solidi A 80 (1), 387 (1983).

    Article  ADS  Google Scholar 

  78. K. A. Kaldybaev, A. F. Konstantinova, and Z. B. Perekalina, Gyrotropy of Uniaxial Absorbing Crystals (Izd-vo ISPIN, Moscow, 2000) [in Russian].

    Google Scholar 

  79. O. A. Baturina, B. N. Grechushnikov, A. A. Kaminskii, et al., Kristallografiya 32 (2), 406 (1987).

    Google Scholar 

  80. A. P. Mill’ and B. V. Dudka, Crystallogr. Rep. 58 (4), 594 (2013).

    Article  ADS  Google Scholar 

  81. A. P. Dudka and B. V. Mill’, Crystallogr. Rep. 59 (5), 689 (2014).

    Article  ADS  Google Scholar 

  82. A. F. Konstantinova, N. R. Ivanov, and B. N. Grechushnikov, Kristallografiya 14 (2), 283 (1969).

    Google Scholar 

  83. A. T. Matrin, S. M. Nichols, S. Li, et al., J. Appl. Crystallogr. 50, 1117 (2017).

    Article  Google Scholar 

  84. A. P. Dudka, T. G. Golovina, and A. F. Konstantinova, Crystallogr. Rep. 64 (6), 937 (2019).

    Article  ADS  Google Scholar 

  85. N. Uchida, Phys. Rev. B 4, 3736 (1971).

    Article  ADS  Google Scholar 

  86. V. I. Al’shits and V. N. Lyubimov, JETP 106 (4), 744 (2008).

    Article  ADS  Google Scholar 

  87. M. V. Hobden, Nature 216 (18), 678 (1967).

    Article  ADS  Google Scholar 

  88. M. V. Hobden, Nature 220 (23), 781 (1968).

    Article  ADS  Google Scholar 

  89. J. Kobayashi, T. Takahashi, T. Hosokawa, and Y. Uesu, J. Appl. Phys. 49, 809 (1978).

    Article  ADS  Google Scholar 

  90. M. Takada, N. Hosogaya, T. Someya, and J. Kobayashi, Ferroelectrics 96, 295 (1989).

    Article  Google Scholar 

  91. B. V. Bokut’ and A. N. Serdyukov, Fiz. Tverd. Tela 13 (10), 2873 (1971).

    Google Scholar 

  92. B. V. Bokut’, F. A. Lopashin, and A. N. Serdyukov, Opt. Spektrosk. 40 (2), 319 (1976).

    Google Scholar 

  93. A. N. Serdyukov, Doctoral Dissertation in Physics and Mathematics (Gomel’ State University, Gomel’, 1985).

  94. D. C. Hanna, V. V. Rampall, and R. C. Smith, Opt. Commun. 8 (2), 151 (1973).

    Article  ADS  Google Scholar 

  95. R. J. Seymour and F. Zernike, Appl. Phys. Lett. 29 (11), 705 (1976).

    Article  ADS  Google Scholar 

  96. T. Elsaesser, H. Lobentanzer, and A. Selmeier, Opt. Commun. 52 (5), 355 (1985).

    Article  ADS  Google Scholar 

  97. T. Habe and J. L. Bufton, Appl. Opt. 23 (18), 3044 (1984).

    Article  ADS  Google Scholar 

  98. Y. X. Fan, R. C. Eckardt, R. L. Byer, et al., Appl. Phys. Lett. 45 (4), 313 (1984).

    Article  ADS  Google Scholar 

  99. L. M. Suslikov, V. Yu. Slivka, and M. P. Lisitsa, Solid-State Optical Filters on Gyrotropic Crystals (Interpres LTD, Kiev, 1998) [in Russian].

    Google Scholar 

  100. J. Goulon, A. Rogalev, F. Wilhelm, et al., JETP 97 (2), 402 (2003).

    Article  ADS  Google Scholar 

  101. C. R. Natoli, Ch. Brouder, Ph. Sainctavit, et al., Eur. Phys. J. B 4, 1 (1998).

    Article  ADS  Google Scholar 

  102. J. Goulon, C. Goulon-Ginet, A. Rogalev, et al., J. Chem. Phys. 108, 6394 (1998).

    Article  ADS  Google Scholar 

  103. A. G. Christy, R. J. Angel, J. Haines, et al., J. Phys. : Condens. Matter 6, 3125 (1994).

    ADS  Google Scholar 

  104. S. Hirotsu, J. Phys. C 10, 967 (1977).

    Article  ADS  Google Scholar 

  105. V. I. Burkov, V. A. Kizel’, G. S. Semin, et al., Kristallografiya 24 (2), 297 (1979).

    Google Scholar 

  106. A. Rogalev, J. Goulon, F. Wilhelm, et al., Crystallogr. Rep. 53 (3), 384 (2008).

    Article  ADS  Google Scholar 

  107. E. N. Ovchinnikova, A. Rogalev, F. Wilhelm, et al., JETP 123 (1), 27 (2016).

    Article  ADS  Google Scholar 

  108. A. P. Oreshko, B. V. Mill’, E. N. Ovchinnikova, et al., Crystallogr. Rep. 63 (2), 158 (2018).

    Article  ADS  Google Scholar 

  109. L. Paster, Selected Works, Vol. 1, Ed. by A. A. Imshenetskii (Izd-vo AN SSR, Moscow, 1960) [in Russian].

    Google Scholar 

  110. V. L. Beloborodov, S. E. Zurabyan, A. P. Luzin, and N. A. Tyukavkina, Organic Chemistry: A Basic Course, Ed. by N. A. Tyukavkina (Drofa, Moscow, 2003) [in Russian].

    Google Scholar 

  111. E. Iliel, S. Wilen, and M. Doyle, Basic Organic Stereochemistry (Wiley, New York, 2001).

    Google Scholar 

  112. K. P. Butin, Theoretical Stereochemistry. http://www.chem.msu.su/rus/teaching/butin/.

  113. M. Matsimoto and K. Amaya, Bull. Chem. Soc. Jpn. 56 (8), 2521 (1983).

    Article  Google Scholar 

  114. N. Matsuura, K. Hasegawa, and T. Miyazawa, Bull. Chem. Soc. Jpn. 55 (7), 1999 (1982).

    Article  Google Scholar 

  115. R. Malon, R. Pancoska, and K. Blaha, Int. Conf. on Circular Dichroism, Conf. Proc., Sofia,1985, Vol. 6, p. 181.

  116. K. Sakamoto and M. Hatano, Bull. Chem. Soc. Jpn. 53 (2), 339 (1980).

    Article  Google Scholar 

  117. A. Lehninger, Principles of Biochemistry, in 3 vols. (Mir, Moscow, 1985) [in Russian].

  118. K. K. Konstantinov and A. F. Konstantinova, Crystallogr. Rep. 58 (5), 697 (2013).

    Article  ADS  Google Scholar 

  119. B. K. Vainshtein, Usp. Fiz. Nauk 88 (3), 527 (1966).

    Article  Google Scholar 

  120. A. McPherson, Eur. J. Biochem. 169, 1 (1990).

    Article  Google Scholar 

  121. I. P. Kuranova, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 6, 6 (2004).

  122. V. I. Timofeev, E. Smirnova, L. A. Chupova, et al., Acta Crystallogr. D 68, 1660 (2012).

    Article  Google Scholar 

  123. S. Akiyama, T. Furukawa, T. Sumizawa, et al., Cancer Sci. 95 (11), 851 (2004).

    Article  Google Scholar 

  124. V. Kh. Akparov, A. M. Grishin, V. I. Timofeev, and I. P. Kuranova, Crystallogr. Rep. 55 (5), 802 (2010).

    Article  ADS  Google Scholar 

  125. L. Hedstrom, L. Szilagyi, and W. J. Rutter, Science 255, 1249 (1992).

    Article  ADS  Google Scholar 

  126. I. Venekei, L. Szilagyi, L. Graf, and W. J. Rutter, FEBS Lett. 379, 143 (1996).

    Article  Google Scholar 

  127. J. P. Changeux and S. J. Edelstein, Science 308, 1424 (2005).

    Article  ADS  Google Scholar 

  128. I. A. Bolotina, V. O. Chekhov, V. Yu. Lugauskas, et al., Mol. Biol. 14 (4), 891 (1980).

    Google Scholar 

  129. I. A. Bolotina, V. O. Chekhov, V. Yu. Lugauskas, and O. B. Ptitsyn, Mol. Biol. 14 (4), 902 (1980).

    Google Scholar 

  130. N. Saito, R. Tabeta, L. Ando, et al., Chem. Lett., No. 9, 1437 (1983).

  131. S. N. Golikov, S. G. Kuznetsov, and E. P. Zatsepin, Stereospecificity of Drug Action (Meditsina, Leningrad, 1973) [in Russian].

    Google Scholar 

  132. K. Williams and E. Lee, Drugs 30, 333 (1985).

    Article  Google Scholar 

  133. I. A. Vasilenko, M. V. Lebedeva, and V. A. Listrov, Razrab. Regist. Lek. Sredstv, No. 1(10), 92 (2015).

    Google Scholar 

  134. V. V. Alekseev, Soros Obrazovat. Zh., No. 1, 49 (1998).

  135. A. Lehninger and N. Cox, Principles of Biochemistry (World Publishers, New York, 1993), p. 58.

    Google Scholar 

  136. I. G. Smirnova, G. N. Gil’deeva, and V. V. Chistyakov, Vestn. Mosk. Univ. Ser. 2: Khim. 53 (4), 234 (2012).

    Google Scholar 

  137. P. K. Yanitskii, V. Reverskii, and V. Gumulka, Nov. Formatsii Med., Nos. 4–5, 98 (1991).

  138. V. V. Dunina and I. P. Beletskaya, Zh. Org. Khim. 28, 1929 (1992).

    Google Scholar 

  139. A. V. Chervyakov, Asimmetriya 4 (2), 77 (2010) (on-line journal).

    Google Scholar 

  140. A. M. VanDongen, Biology of the NMDA Receptor (Frontiers in Neuroscience) (CRC, Boca Raton, 2008).

    Book  Google Scholar 

  141. T. Nakagawa, Mol. Neurobiol. J. 42, 161 (2010).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences in the part concerning the optical activity in inorganic materials and by the National Research Centre “Kurchatov Institute” (order no. 1363 on June 25, 2019) in the part concerning the optical activity of organic compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Golovina.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovina, T.G., Konstantinova, A.F. & Timofeev, V.I. Features of Optical Activity in Inorganic and Organic Materials. Crystallogr. Rep. 65, 653–677 (2020). https://doi.org/10.1134/S1063774520050077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520050077

Navigation