Skip to main content
Log in

Effect of Substrate Temperature on the Growth of Molybdenum Trioxide Thin Films

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Molybdenum oxide is one of the most important inorganic material, which exhibits several phases, such as MoO3, MoO2, Mo4O11, Mo5O14, etc. Among them, molybdenum trioxide (MoO3) can crystallize in various phases, such as orthorhombic, monoclinic etc., which makes it useful for possible applications in chemical, electrical and electrochemical industries. In this work, MoO3 films were obtained by pulsed laser deposition by varying the substrate temperature from room temperature to 400°C. The thin films were deposited on fine cleaned glass substrates coated with fluorine tin oxide under a pressure of 10–5 mbar. X-ray diffraction patterns display two polymorphic phases of MoO3 (α and β), but no other phases are observed, and the structure changes from orthorhombic to monoclinic. The substrate temperature strongly influences the structure and surface topography. Morphological studies show the surface homogeneity, crack-free, layered structure and crystallinity of the films. The band gap of the obtained MoO3 thin films increases from 3.0 to 3.39 eV with increasing substrate temperature from room temperature to 400°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. Ashrit, Transition Metal Oxides Thin Film-Based Chromogenics and Devices (Elsevier, 2017).

    Google Scholar 

  2. C. V. Ramana and C. M. Julien, Chem. Phys. Lett. 428, 114 (2006).

    Article  ADS  Google Scholar 

  3. T. Aoki, T. Matsushita, K. Mishero, et al., Thin Solid Films 517, 1482 (2008).

    Article  ADS  Google Scholar 

  4. A. Ponzoni, E. Comini, G. Sberveglieri, et al., Appl. Phys. Lett. 88, 203101 (2006).

    Article  ADS  Google Scholar 

  5. T. S. Sian and G. B. Reddy, J. Appl. Phys. 98, 026104 (2005).

    Article  ADS  Google Scholar 

  6. F. F. Ferreria, T. G. S. Cruz, M. C. A. Fantini, et al., Sold. Stat. Ionics 136, 357 (2000).

    Article  Google Scholar 

  7. D. D. Yao, J. Zh. Ou, K. Latham, et al., Cryst. Growth Des. 12, 1865 (2012).

    Article  Google Scholar 

  8. Q. Xia, H. Zhao, Zh. Du, et al., Electrochim. Acta 180, 947 (2015).

    Article  Google Scholar 

  9. A. M. Andersson, C. G. Granqvist, and J. R. Stevens, Appl. Opt. 28, 3295 (1989).

    Article  ADS  Google Scholar 

  10. C. G. Granqvist, Solid State Ionics 53, 479 (1992).

    Article  Google Scholar 

  11. M. Ferroni, V. Guidi, G. Martinelli, et al., Thin Solid Films 307, 148 (1997).

    Article  ADS  Google Scholar 

  12. H. Al-kandari, F. Al-khorafi, H. Belatel, and A. Katrib, Catal. Commun. 5, 225 (2004).

    Article  Google Scholar 

  13. D. Mutschall, K. Holzner, and E. Obermeier, Sens. Actuators B 36, 320 (1996).

    Article  Google Scholar 

  14. I. Navas, R. Vinodkumar, A. P. Detty, and V. P. M. Pillai, IOP Conf. Ser.: Mater. Sci. Eng. 1, 012035 (2009).

  15. M. F. Al-kuhaili, S. M. A. Durrani, and I. A. Bakhtiari, Appl. Phys. A 98, 609 (2010).

    Article  ADS  Google Scholar 

  16. B. Mendoza-Sanchez, T. Brousse, C. Ramirez-Castro, et al., Electrochim. Acta 91, 253 (2013).

    Article  Google Scholar 

  17. T. S. Sian and G. B. Reddy, Sol. Energy Mater. Sol. Cells 82, 375 (2004).

    Article  Google Scholar 

  18. S. H. Mohamed, O. Kappertz, J. M. Ngaruiya, et al., Thin Solid Films 429, 135 (2003).

    Article  ADS  Google Scholar 

  19. A. Boukhachem, C. Bouzidi, R. Boughalmi, et al., Ceram. Int. 40, 13427 (2014).

    Article  Google Scholar 

  20. C. V. Ramana, V. V. Atuchin, L. D. Pokrovsky, et al., J. Vac. Sci. Technol. A 25, 1166 (2007).

    Article  Google Scholar 

  21. C. Hsu, C. Chan, and H. Huang, Thin Solid Films 516, 4839 (2008).

    Article  ADS  Google Scholar 

  22. F. Delalat, M. Ranjbar, and H. Salamati, Sol. Energy Mater. Sol. Cells 144, 165 (2016).

    Article  Google Scholar 

  23. T. Ivanova, K. Gesheva, and A. Szekeres, J. Solid State Electrochem. 7, 21 (2002).

    Article  Google Scholar 

  24. R. M. Guerrero, J. R. V. Garcia, V. Santes, and E. Gomez, J. Alloys Compd. 435, 701 (2007).

    Article  Google Scholar 

  25. J. Torres and J. E. Alfonso, Thin Solid Films 478, 146 (2005).

    Article  ADS  Google Scholar 

  26. R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, and C. Sanjeeviraja, Curr. Appl. Phys. 7, 51 (2007).

    Article  ADS  Google Scholar 

  27. P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications (VCH, Weinheim, 1995).

    Book  Google Scholar 

  28. T. T. P. Pham, P. H. D. Nguyen, T. T. Vo, et al., Adv. Nat. Sci.: Nanosci. Nanotechnol. 6, 045010 (2015).

    ADS  Google Scholar 

  29. C. G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995).

    Google Scholar 

  30. C. Julien, B. Yebka, and J. P. Guesdon, Ionics 1, 316 (1995).

    Article  Google Scholar 

  31. A. Hojabri, F. Hajakbari, and A. E. Meibodi, J. Theor. Appl. Phys. 9, 67 (2015).

    Article  ADS  Google Scholar 

  32. L. Gonga and S. C. Haurb, Chem. C 8, 2090 (2017).

    Google Scholar 

  33. N. Kenny, C. R. Kannewurf, and D. H. Whitmore, J. Phys. Chem. Solids 27, 1237 (1966).

    Article  ADS  Google Scholar 

  34. C. Julien, A. Khelfa, and O. M. Hussain, J. Cryst. Growth 156, 235 (1995).

    Article  ADS  Google Scholar 

  35. G. Hoppmann and E. Salje, Opt. Commun. 30, 199 (1979).

    Article  ADS  Google Scholar 

  36. V. Nirupama, P. S. Reddy, and O. M. Hussain, Int. J. Ionics 13, 451 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Madhuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya Dixit, Madhuri, K.V. Effect of Substrate Temperature on the Growth of Molybdenum Trioxide Thin Films. Crystallogr. Rep. 65, 792–797 (2020). https://doi.org/10.1134/S1063774520050065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520050065

Navigation