Skip to main content

Advertisement

Log in

Site selection for finfish cage farming using spatial multi-criteria evaluation and their validation at field in the Bay of Souahlia (Algeria)

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The development of marine fish farming on the Algerian coast is facing a number of environmental and logistical constraints. In a multi-disciplinary approach, based on aquaculture activity planning and field validation, the aim of this study is to target suitable areas for the setting of floating cages for Sparus aurata breeding at the Bay of Souahlia, Algeria. Multi-criteria evaluation via GIS was applied, combining 3 sub-models (environmental, socioeconomic, and constraint sub-models). The field verification was carried out on El Mokretar Aqua farm, by comparing its position with the result of the multi-criteria evaluation and by studying the growth performance indicators, thermal unit growth coefficient, specific growth rate, and feed conversion ratio and biomass. The regeneration of the final suitability map allowed for the delimitation of the favorable area for the implantation of the floating cages, which corresponds to 32% of the total area, with 3 classes of suitability. The El Mokretar Aqua farm is located at station S11, with a significant relevance index of 0.69. The gilthead seabream reflects a good growth performance. It grows with an average weight of 5 to 305 g over a 306-day rearing period, due to the environmental conditions and the good management of the farm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bhushan N, Rai K (2004) Strategic decision-making: applying the analytic hierarchy process. Springer, Berlin, 9, 11–21

  • Billard R (2005) Introduction à l’aquaculture. Lavoisier TEC et DOC, Paris

    Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions 1. Model description and validation. J Geophys Res 104:7649–7666. https://doi.org/10.1029/98JC02622

    Article  Google Scholar 

  • Brigolin D, Lourguioui H, Taji MA, Venier C, Mangin A, Pastres R (2015) Space allocation for coastal aquaculture in North Africa: data constraints, industry requirements and conservation issues. Ocean Coast Manag 116:89–97. https://doi.org/10.1016/j.ocecoaman.2015.07.010

    Article  Google Scholar 

  • Dapueto G, Massa F, Costa S, Cimoli L, Olivari E, Chiantore M, Federici P, Povero P (2015) A spatial multi-criteria evaluation for site selection of offshore marine fish farm in the Ligurian Sea, Italy. Ocean Coast Manag 116:64–77

    Article  Google Scholar 

  • Ex-Ministry of Fisheries and Fisheries Resources (2014) Assessment (2012–2014): 2030 perspective and project «plan Aquapêche 2020» Published by Directorate-General for Fisheries and Aquaculture, Algiers

  • Falconer L, Hunter DC, Scott PC, Telfer CT, Ross LG (2013) Using physical environmental parameters and cage engineering design within GIS-based site suitability models for marine aquaculture. Aquac Environ Interact 4:223–237

    Article  Google Scholar 

  • Falconer L, Telfer TC, Ross LG (2016) Investigation of a novel approach for aquaculture site selection. J Environ Manag 181:791–804

  • Falconer L, Telfer T, Pham KL, Ross L (2018) GIS technologies for sustainable aquaculture. ​Oxford,  University of Stirling, pp. 290–314.

  • Gimpel A, Stelzenmüller V, Grote B, Buck BH, Floeter J, Núñez-Riboni I, Pogoda B, Temming A (2015) A GIS modeling framework to evaluate marine spatial planning scenarios: co-location of offshore wind farms and aquaculture in the German EE. Mar Policy 55:102–155. https://doi.org/10.1016/j.marpol.2015.01.012

    Article  Google Scholar 

  • Gimpel A, Stelzenmüller V, Töpsch S, Galparsoro I, Gubbins M, Miller D, Murillas A, Murray AG, Pınarbaşı K, Roca G, Watret R (2018) A GIS-based tool for an integrated assessment of spatial planning trade-offs with aquaculture. Sci Total Environ https://doi.org/10.1016/j.scitotenv.2018.01.133

  • Hadipour A, Vafaie F, Hadipour V (2014) Land suitability evaluation for brackish water aquaculture development in coastal area of Hormozgan, Iran. Aquac Int 23:329–343. https://doi.org/10.1007/s10499-014-9818-y

    Article  CAS  Google Scholar 

  • Hernández JM, Leyva EG, León CJ, Vergara JM (2003) A growth model for gilthead seabream (Sparus aurata). Ecol Model 165:265–283. https://doi.org/10.1016/S0304-3800(03)00095-4

    Article  Google Scholar 

  • Kaushik SJ (1998) Nutritional bioenergetics and estimation of waste production in non-salmonids. Aquat Living Resour 11:211–217

    Article  Google Scholar 

  • Kletou D, Kleitou P, Savva I, Attrill MJ, Antoniou C, Hall-Spencer JM (2018) Seagrass recovery after fish farm relocation in the eastern Mediterranean. Mar Environ Res 140:221–233. https://doi.org/10.1016/j.marenvres.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  • Kumer M, Cripps S (2012) Environmental aspects. In: Lucas JS, Southgate PC (ed) Aquaculture: Farming aquatic animals and plants, Second Edition. Blackwell Publishing Ltd, West Sussex, pp 84–106

  • Laama C, Bachari NI (2017) Spatiotemporal variation of physicochemical and bacteriological parameters for site selection of finfish cage in Souahlia Bay, Chlef (Algeria). Proceedings of Euro-Mediterranean conference for environmental integration (EMCEI-1), Springer internal publishing AG, Tunisia

  • Laama C, Bachari NI (2018) Evaluation of site suitability for the expansion of mussel farming in the Bay of Souahlia (Algeria) using empirical models. J Appl Aquac 31:337–355. https://doi.org/10.1080/10454438.2018.1556145

    Article  Google Scholar 

  • Liorente I, Luna L (2013) The competitive advantages arising from different environmental conditions in seabream, Sparus aurata, production in the Mediterranean Sea. J World Aquacult Soc 5:611–627

    Article  Google Scholar 

  • Longdill PC, Healy TR, Black KP (2008) An integrated GIS approach for sustainable aquaculture management area site selection. Ocean Coast Manag 51:612–624

    Article  Google Scholar 

  • Malczewski J (2000) On the use of weighted linear combination method in GIS: Common and best practice approaches. Transactions in GIS 4 (1):5–22. https://doi.org/10.1111/1467-9671.00035

  • Marco PD, Petochi T, Marino G, Priori A, Finoia MG, Tomassetti P, Porrello S, Giorgi G, Lupi P, Bonelli A, Parisi G, Poli BM (2017) Insights into organic farming of European sea bass Dicentrarchus labrax and gilthead sea bream Sparus aurata through the assessment of environmental impact, growth performance, fish welfare and product quality. Aquaculture 471:92–105. https://doi.org/10.1016/j.aquaculture.2017.01.012

    Article  Google Scholar 

  • Mayer P, Estruch V, Blasco J, Jover M (2008) Predicting the growth of gilthead sea bream (Sparus aurata L.) farmed in marine cages under real production conditions using temperature- and time-dependent models. Aquac Res 39:1046–1052. https://doi.org/10.1111/j.1365-2109.2008.01963.x

    Article  Google Scholar 

  • Micael J, Costa AC, Aguiar P, Medeiros A, Calado H (2015) Geographic information system in a multi-criteria tool for mariculture site selection. Coast Manag 43:52–66. https://doi.org/10.1080/08920753.2014.985178

    Article  Google Scholar 

  • Ministry of Agriculture, Rural Development and Fisheries (2017) The fishing and aquaculture sector in Algeria. Published by the Directorate-General for Fisheries and Aquaculture, Algiers

    Google Scholar 

  • Muller-Feuga A (1990) Modélisation de la croissance des poissons en élevage. Rapports scientifiques et techniques de l’IFREMER N° 21. Institut Français de Recherche pour l’Exploitation de la Mer

  • Nath SS, Bolte JP, Ross LG, Aguilar-Manjarraez J (2000) Application of geographical information systems (GIZ) for spatial decision support in aquaculture. Aquac Eng 23:233–278

    Article  Google Scholar 

  • Oyinlola MA, Reygondeau G, Wabnitz CCC, Troell M, Cheung WWL (2018) Global estimation of areas with suitable environmental conditions for mariculture species. PLoS One 13(1). https://doi.org/10.1371/journal.pone.0191086

  • PAP/CAR (1996) Approches pour l’aménagement de zones côtières en relation avec l’aquaculture en Méditerranée

  • Pérez OM, Telfer TC, Ross LG (2003) On the calculation of wave climate for offshore cage culture site selection: a case study in Tenerife (Canary Islands). Aquac Eng 29:1–21

    Article  Google Scholar 

  • Pérez OM, Telfer TC, Ross LG (2005) Geographical information systems-based models for offshore floating marine fish cage aquaculture site selection in Tenerife, Canarys. Aquac Res 36:946–961

    Article  Google Scholar 

  • Petridis D, Rogdakis I (1996) The development of growth and feeding equations for seabream, Sparus aurata L., Culture. Aquac Res 27:413–419

    Article  Google Scholar 

  • Porporato EMD, Pastres R, Brigolin D (2020) Site suitability for finfish marine aquaculture in the Central Mediterranean Sea. Front Mar Sci 6. https://doi.org/10.3389/fmars.2019.00772

  • Radiarta IN, Saitoh SI (2009) Biophysical models for Japanese scallop, Mizuhopecten yessoensis, aquaculture site selection in Funka Bay, Hokkaido, Japan, using remotely sensed data and geographic information system. Aquac Int 17:403–419. https://doi.org/10.1007/s10499-008-9212-8

    Article  Google Scholar 

  • Radiarta IN, Saitoh S, Miyazono A (2008) GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan. Aquaculture 284:127–135

    Article  Google Scholar 

  • Ross LG, Handisyde N, Nimmo DC (2009) Spatial decision support in aquaculture: the role of geographical information systems and remote sensing. University of Stirling, Scotland

    Google Scholar 

  • Saaty TL (1991) Reponse to Holder’s comments on the analytic hierarchy process. J Oper Res Soc 42:909–914 https://doi.org/10.1057/jors.1991.176

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281

    Article  Google Scholar 

  • Seginer I (2015) Growth models of gilthead sea bream (Sparus aurata L.) for aquaculture: a review. Aquac Eng. https://doi.org/10.1016/j.aquaeng.2015.12.001

  • Szuster BW, Albasri H (2010) Site selection for grouper mariculture in Indonesia. Int J Fish Aquac 3:87–92

    Google Scholar 

  • UICN (2009) Guide pour le développement durable de l’aquaculture méditerranéenne 2. Aquaculture: Sélection et Gestion des Sites. International Union for Conservation of Nature

  • Vianna LFDN, Filho JB (2018) Spatial analysis for site selection in marine aquaculture: an ecosystem approach applied to Baía Sul, Santa Catarina, Brazil. Aquaculture 489:162–174. https://doi.org/10.1016/j.aquaculture.2017.12.039

    Article  Google Scholar 

Download references

Acknowledgments

We thank all the staff of the El Mokretar Aqua farm, especially the owner of this farm Mr. Elmokretar Mahfoud and the director Mr. Benguala Mohammed. Also, we would like to thank Mr. Bellal Mohammed, for the corrections and the English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laama Chahinez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahinez, L., Abderrahim, H. & El Islem, B.N. Site selection for finfish cage farming using spatial multi-criteria evaluation and their validation at field in the Bay of Souahlia (Algeria). Aquacult Int 28, 2419–2436 (2020). https://doi.org/10.1007/s10499-020-00598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-020-00598-x

Keywords

Navigation