Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 6, 2020

Simultaneous improvement of mechanical and conductive properties of poly(amide-imide) composites using carbon nano-materials with different morphologies

  • Yawen Fang , Huang Yu , Yanbin Wang EMAIL logo , Zhehao Zhang , Changlong Zhuang , Gui Fang , Zhonglin Luo , Bo Zhang and Biaobing Wang EMAIL logo

Abstract

Two conductive carbon materials, one with a beaded-like structure (carbon black, ECP) and another with tube-like structure (functionalized multi-walled carbon nanotubes, FMWCNTs), were added into a poly(amide-imide) (PAI) matrix. Combining the advantages of ECP (good compatibility) and FMWCNT (high conductivity), the conductivity was improved from 3.7 S m−1 for PAI/FMWCNT polymer composites to 100 S m−1 for PAI/FMWCNT/ECP ternary conductive polymer composites, much higher than that of the sum of PAI/ECP and PAI/FMWCNT. The tensile strength increased from 40 to 70 MPa. The improved conductive and mechanical properties were mainly due to much more intensive conductive network produced in the PAI/FMWCNT/ECP ternary composites, which is useful for electron flow and stress spread. The number of hydrogen bond was increased by adding ECP into PAI/FMWCNT binary composites, and played an important role in forming the unique morphology as evident by Fourier transform infrared spectrometry (FTIR) and X-ray diffraction (XRD) measurements. These conductive composites have potential for flexible electronic applications.


Corresponding author: Yanbin Wangand Biaobing Wang, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, 213164 Changzhou, Jiangsu, China, E-mail: , ( B. Wang)

Funding source: Postgraduate Research & Practice Innovation Program of Jiangsu Province

Award Identifier / Grant number: SJCX20_0976

Funding source: Double Plan of Jiangsu Province

Award Identifier / Grant number: 2016

Award Identifier / Grant number: BK20160280

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Natural Science Foundation of Jiangsu Province (BK20160280), Double Plan of Jiangsu Province (2016), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX20_0976).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Scrosati, B. Conducting polymers and their applications. Mater. Sci. Forum 1989, 42, 207–220. https://doi.org/10.4028/www.scientific.net/MSF.42.207.Search in Google Scholar

2. Chen, D. Q., Chen, G. H. In situ synthesis of thermoplastic polyurethane/graphene nanoplatelets conductive composite by ball milling. J. Reinf. Plast. Compos. 2013, 32, 300–307. https://doi.org/10.1177/0731684412471230.Search in Google Scholar

3. Afzalia, A., Mottaghitalab, V., Afghahic, S. S. S., Jafarianc, M., Atassi, Y. Electromagnetic properties of absorber fabric coated with BaFe12O19/MWCNTs/PANi nanocomposite in X and Ku bands frequency. J. Magn. Magn. Mater. 2017, 442, 224–230. https://doi.org/10.1016/j.jmmm.2017.06.119.Search in Google Scholar

4. Sobha, A. P., Sreekalac, P. S., Narayanankutty, S. K. Electrical, thermal, mechanical and electromagnetic interference shielding properties of PANI/FMWCNT/TPU composites. Prog. Org. Coat. 2017, 113, 168–174. https://doi.org/10.1016/j.porgcoat.2017.09.001.Search in Google Scholar

5. Wu, L., Ge, Y. N., Zhang, L., Yu, D. Y., Wu, M. H., Ni, H. G. Enhanced electrical conductivity and competent mechanical properties of polyaniline/polyacrylate (PANI/PA) composites for antistatic finishing prepared at the aid of polymeric stabilizer. Prog. Org. Coat. 2018, 125, 99–108. https://doi.org/10.1016/j.porgcoat.2018.09.002.Search in Google Scholar

6. Maiti, S., Ray, A. Processable heat-resistant polymers: polyamides and polyamideimides containing azo linkages. Polymer 1984, 25, 551–553. https://doi.org/10.1016/0032-3861(84)90218-0.Search in Google Scholar

7. Duan, G. G., Liu, S. W., Jiang, S. H., Hou, H. Q. High-performance polyamide-imide films and electrospun aligned nanofibers from an amide-containing diamine. J. Mater. Sci. 2109, 54, 6719–6727. https://doi.org/10.1007/s10853-019-03326-w.Search in Google Scholar

8. Chang, T. C., Wang, G. P., Hong, Y. S., Chen, H. B. Characterization and degradation of hydrogen-bonded acidic polyamideimides linked by disiloxanes. Polym. Degrad. Stabil. 2001, 73, 301–308. https://doi.org/10.1016/s0141-3910(01)00091-x.Search in Google Scholar

9. Hu, Z. Q., Li, S. J., Zhang, C. H. Synthesis and properties of polyamide-imides containing fluorenyl cardo structure. J. Appl. Polym. Sci. 2017, 106, 2494–2501. https://doi.org/10.1002/app.26758.Search in Google Scholar

10. Sona, M., Ha, Y., Choi, M. C., Lee, T., Han, D., Han, S., Ha, C. S. Microstructure and properties of polyamideimide/silica hybrids compatibilized with 3-aminopropyltriethoxysilane. Eur. Polym. J. 2008, 44, 2236–2243. https://doi.org/10.1016/j.eurpolymj.2008.04.037.Search in Google Scholar

11. Naderi-Samani, H., Loghman-Estarki, M. R., ShojaRazavi, R., Ramazani, M. The effects of organoclay on the morphology, thermal stability, transparence and hydrophobicity properties of polyamide-imide/nanoclay nanocomposite coatings. Prog. Org. Coat. 2017, 112, 162–168. https://doi.org/10.1016/j.porgcoat.2017.07.012.Search in Google Scholar

12. Naderi-Samani, H., Loghman-Estarki, M. R., Shoja Razavi, R., Ramazani, M., Jalili, I. Water-based polyamide imide-nanoclay coating: preparation, characterization, thermal stability and visible transparency. Prog. Org. Coat. 2016, 101, 502–509. https://doi.org/10.1016/j.porgcoat.2016.09.016.Search in Google Scholar

13. Ressel, J., Seewald, O., Bremser, W., Reicher, H. P., Strube, O. I. Low friction poly(amide-imide) coatings with silicones as tethered liquids. Prog. Org. Coat. 2018, 124, 1–7. https://doi.org/10.1016/j.porgcoat.2018.07.029.Search in Google Scholar

14. Helali, N., Rastgar, M., Ismail, M. F., Sadrzadeh, M. Development of underwater superoleophobic polyamide-imide (PAI) micro-filtration membranes for oil/water emulsion separation. Separ. Purif. Technol. 2020, 238, 116451. https://doi.org/10.1016/j.seppur.2019.116451.Search in Google Scholar

15. Briesenick, D., Bremser, W. Synthesis of polyamide-imide-montmorillonite-nanocomposites via new approach of in situ polymerization and solvent casting. Prog. Org. Coat. 2015, 82, 26–32. https://doi.org/10.1016/j.porgcoat.2015.01.013.Search in Google Scholar

16. Wang, Y. B., Wang, T., Wang, T. M., Zhang, J. Y., Chen, J. X., Yang, R., Ruan, L. X., Wang, B. B. Facile preparation of multifunctional poly(amide-imide)/polyaniline films: combining self-cleaning, self-extinguishing, and conductive. Polym. Eng. Sci. 2018, 59, 33–43. https://doi.org/10.1002/pen.24839.Search in Google Scholar

17. Cao, M., Luo, Z. L., Yang, Y., Wang, Y. B., Wang, B. B. In situ polymerized poly(amide imide)/multiwalled carbon nanotube composite: structural, mechanical, and electrical studies. Polym. Plast. Technol. Eng. 2017, 56, 1391–1401. https://doi.org/10.1080/03602559.2016.1275689.Search in Google Scholar

18. Kinyanjui, J. M., Hatchett, D. W., Castruita, G., Ranasinghe, A. D., Weinhardt, L., Hofmann, T., Heske, C. Synthesis and characterization of conductive polyimide/carbon composites with Pt surface deposit. Synth. Met. 2011, 161, 2368–2377. https://doi.org/10.1016/j.synthmet.2011.08.046.Search in Google Scholar

19. Huang, Y. C., Lin, J. H., Tseng, I. H., Lo, A. Y., Lo, T. Y., Yu, H. P., Tsai, M. H., Whang, W. T., Hsu, K. Y. An in situ fabrication process for highly electrical conductive polyimide/MWCNT composite films using 2,6-diaminoanthraquinone. Compos. Sci. Technol. 2013, 87, 174–181. https://doi.org/10.1016/j.compscitech.2013.08.008.Search in Google Scholar

20. Yamamura, M., Matsumoto, H., Mawatari, Y., Kage, H. Drying-induced reduction in electrical resistivity of carbon black-polyamideimide nanocomposite films. Chem. Eng. Process. 2013, 70, 17–20. https://doi.org/10.1016/j.cep.2013.05.012.Search in Google Scholar

21. Yang, H., Gong, L. H., Zheng, Z., Yao, X. F. Highly stretchable and sensitive conductive rubber composites with tunable piezoresistivity for motion detection and flexible electrodes. Carbon 2020, 158, 893–903. https://doi.org/10.1016/j.carbon.2019.11.079.Search in Google Scholar

22. Wang, Y. B., Yu, H., Li, Y. C., Wang, T., Xu, T., Chen, J. X., Fan, Z. C., Wang, Y. F., Wang, B. B. Facile preparation of highly conductive poly(amide-imide) composite films beyond 1000 S m−1 through ternary blend strategy. Polymers 2019, 11, 546–559. https://doi.org/10.3390/polym11030546.Search in Google Scholar

23. Wang, Y. B., Chen, J. X., Shen, Y. P., Wang, T., Zhang, Z. H., Sun, L. W., Ji, B. B., Wang, B. B. Control of conductive and mechanical performances of poly(amide-imide) composite films utilizing synergistic effect of polyaniline and multi-walled carbon nanotube. Polym. Eng. Sci. 2018, 59, 224–230. https://doi.org/10.1002/pen.25032.Search in Google Scholar

24. Xu, W. H., Ding, Y. C., Yu, Y., Jiang, S. H., Chen, L. L., Hou, H. Q. Highly foldable PANi@CNTs/PU dielectric composites toward thin-film capacitor application. Mater. Lett. 2017, 192, 25–28. https://doi.org/10.1016/j.matlet.2017.01.064.Search in Google Scholar

25. Cho, E. C., Jian, C. W. C., Chou, J. A., Chung, C. L., Ho, P. C., Lee, K. C., Huang, J. H., Hsiao, Y. S. MWCNT-embedded Li4Ti5O12 microspheres interfacially modified with polyaniline asternary composites for high-performance lithium ion battery anodes. Ceram. Int. 2020, 46, 6801–6810. https://doi.org/10.1016/j.ceramint.2019.11.172.Search in Google Scholar

26. Usman, F., Dennis, J. O., Seong, K. C., Ahmed, A. Y., Meriaudeau, F., Ayodele, O. B., Tobi, A. R., Rabih, A. A. S., Yar, A. Synthesis and characterisation of a ternary composite of polyaniline, reduced graphene-oxide and chitosan with reduced optical band gap and stable aqueous dispersibility. Results Phys. 2019, 15, 102690. https://doi.org/10.1016/j.rinp.2019.102690.Search in Google Scholar

27. Ajdari, F. B., Kowsari, E., Ehsani, A. Ternary nanocomposites of conductive polymer/functionalized GO/MOFs: synthesis, characterization and electrochemical performance as effective electrode materials in pseudocapacitors. J. Solid State Chem. 2018, 265, 155–166. https://doi.org/10.1016/j.jssc.2018.05.038.Search in Google Scholar

28. Bai, Q. Q., Jin, X. Z., Yang, J. X., Qi, X. D., Wang, Y. Constructing network structure of graphene nanoplatelets/carbon nanofibers inpolystyrene and the resultant heat resistance, thermal and conductive properties. Compos. Part A Appl. Sci. Manuf. 2019, 117, 299–307. https://doi.org/10.1016/j.compositesa.2018.12.002.Search in Google Scholar

29. Qua, M., Nilsson, F., Qin, Y., Yang, G. D., Pan, Y. M., Liu, X. H., Rodriguez, G. H., Chen, J. F., Zhang, J. F., Schubert, D. W. Electrical conductivity and mechanical properties of melt-spun ternary composites comprising PMMA, carbon fibers and carbon black. Compos. Sci. Technol. 2017, 150, 24–31. https://doi.org/10.1016/j.compscitech.2017.07.004.Search in Google Scholar

30. Li, J., Sun, Y., Wang, J. L., Tian, J. H., Zhang, X. Q., Yang, H., Lin, B. P. Synthesis, Structure and electrochemical properties of novel ternary composite reduced-graphene oxide/Ag nanoparticles/poly(p-phenylenediamine). J. Alloys Compd. 2018, 749, 783–793. https://doi.org/10.1016/j.jallcom.2018.03.326.Search in Google Scholar

31. Nakaramontri, Y., Pichaiyut, S., Wisunthorn, S., Nakason, C. Hybrid carbon nanotubes and conductive carbon black in natural rubber composites to enhance electrical conductivity by reducing gaps separating carbon nanotube encapsulates. Eur. Polym. J. 2017, 90, 467–484. https://doi.org/10.1016/j.eurpolymj.2017.03.029.Search in Google Scholar

32. Toghchi, M. J., Campagne, C., Cayla, A., Bruniaux, P., Loghin, C., Cristian, I., Burgnies, L., Chend, Y. Electrical conductivity enhancement of hybrid PA6,6 composite containing multiwall carbon nanotube and carbon black for shielding effectiveness application in textiles. Synth. Met. 2019, 251, 75–84. https://doi.org/10.1016/j.synthmet.2019.03.026.Search in Google Scholar

33. Wei, T., Song, L. P., Zheng, C., Wang, K., Yan, J., Shao, B., Fan, Z. J. The synergy of a three filler combination in the conductivity of epoxy composites. Mater. Lett. 2010, 64, 2376–2379. https://doi.org/10.1016/j.matlet.2010.07.061.Search in Google Scholar

34. Wen, M., Sun, X. J., Su, L., Shen, J. B., Li, J., Guo, S. Y. The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 2012, 53, 1602–1610. https://doi.org/10.1016/j.polymer.2012.02.003.Search in Google Scholar

35. Wang, Y. B., Lu, G. M., Wang, W. J., Cao, M., Luo, Z. L., Shao, N. N., Wang, B. B. Molecular design and synthesis of thermotropic liquid crystalline poly(amide imide)s with high thermal stability and solubility. e-Polymers 2017, 17, 199–207. https://doi.org/10.1515/epoly-2016-0288.Search in Google Scholar

36. Wang, Y. B., Yu, H., Lu, G. M., Luo, Z. L., Shao, N. N., Cao, M., Wang, B. B. Influence of structural modification on the properties of poly(amide–imide)s. Polym. Polym. Compos. 2020, 28, 26–34. https://doi.org/10.1177/0967391119858555.Search in Google Scholar

37. Hsiao, S. H., Yang, C. P. Preparation of poly(amide-imide)s by direct polycondensation with triphenyl phosphite. IV. aliphatic-aromatic poly(amide-imide)s based on N,N′-bis(o-carboxyalkyl) pyromellitimides. J. Polym. Sci. A Polym. Chem. 1990, 28, 2169–2178. https://doi.org/10.1002/pola.1990.080280812.Search in Google Scholar

38. Li, Y., Wang, S. F., Zhang, Y., Zhang, Y. X. Carbon black-filled immiscible polypropylene/epoxy blends. J. Appl. Polym. Sci. 2006, 99, 461–471. https://doi.org/10.1002/app.22011.Search in Google Scholar

39. Zhang, H. B., Lin, G. D., Zhou, Z. H., Dong, X., Chen, T. Raman spectra of MWCNTs and MWCNT-based H2-adsorbing system. Carbon 2002, 40, 2429–2436. https://doi.org/10.1016/s0008-6223(02)00148-3.Search in Google Scholar

40. Diaham, S., Locatelli, M. L. Novel high glass transition polyamide-imide: Tg influence on electrical conductivity at high temperature. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3053–3058. https://doi.org/10.1109/tdei.2015.004925.Search in Google Scholar

41. Liu, Y., Qian, X. Y., Shi, H. B., Zhou, W. Y., Cai, Y. T., Li, W. Z., Yao, H. Y. New poly(amide-imide)s with trifluoromethyl and chloride substituents: synthesis, thermal, dielectric, and optical properties. Eur. Polym. J. 2017, 94, 392–404. https://doi.org/10.1016/j.eurpolymj.2017.07.023.Search in Google Scholar

42. Mallakpour, S., Zadehnazari, A. One-pot synthesis of glucose functionalized multi-walled carbon nanotubes: dispersion in hydroxylated poly(amide-imide) composites and their thermo-mechanical properties. Polymer 2013, 54, 6329–6338. https://doi.org/10.1016/j.polymer.2013.09.048.Search in Google Scholar

43. Wang, Z. J., Zhou, W. Y., Sui, X. Z., Dong, L. Enhanced dielectric properties and thermal conductivity of Al/CNTs/PVDF ternary composites. J. Reinf. Plast. Compos. 2015, 34, 1126–1135. https://doi.org/10.1177/0731684415588776.Search in Google Scholar

44. Krevelen, D. W. V. Some basic aspects of flame resistance of polymeric materials. Polymer 1975, 16, 615–620. https://doi.org/10.1016/0032-3861(75)90157-3.Search in Google Scholar

45. Jia, Q. M., Zheng, M., Zhu, Y. C., Li, J. B., Xu, C. Z. Effects of organophilic montmorillonite on hydrogen bonding, free volume and glass transition temperature of epoxy resin/polyurethane interpenetrating polymer networks. Eur. Polym. J. 2007, 43, 35–42. https://doi.org/10.1016/j.eurpolymj.2006.10.016.Search in Google Scholar

46. Wang, J. H., Jiao, Q. Z., Li, H. S., Zhao, Y., Gu, B. Z. In situ preparation of polyimide/amino-functionalized carbon nanotube composites and their properties. Polym. Compos. 2014, 35, 1952–1959. https://doi.org/10.1002/pc.22854.Search in Google Scholar

47. Calleja, F. J. B., Bayer, R. K., Ezquerra, T. A. Electrical conductivity of polyethylene-carbon-fibre composites mixed with carbon black. J. Mater. Sci. 1988, 23, 1411–1415. https://doi.org/10.1007/BF01154609.Search in Google Scholar

Received: 2020-04-23
Accepted: 2020-09-03
Published Online: 2020-10-06
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2020-0091/html
Scroll to top button