Skip to main content
Log in

Geodesic flows on real forms of complex semi-simple Lie groups of rigid body type

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

The geodesic flows are studied on real forms of complex semi-simple Lie groups with respect to a left-invariant (pseudo-)Riemannian metric of rigid body type. The Williamson types of the isolated relative equilibria on generic adjoint orbits are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the proof of [19, Theorem 6.94], the real form is arbitrarily chosen, but we choose a compact real form \({\mathfrak {g}}_u\).

  2. In the first table in [29], this symbol is misprinted as \(\mathbf {EII}\) at the first case of the row \(E_6\) and the last column.

  3. This symbol appears in the first column of Tables 1 and 2, e.g., as \(A_{\ell }\left( B_{\frac{\ell }{2}}\right) \).

  4. There seems to be a typo at the number of focus–focus components of the Williamson type for \(\mathfrak {gl}_k\left( {\mathbb {H}}\right) \) in [18, Corollary 7.5]; the number \(2k(k-1)\) should be read as \(k(k-1)\). Then, it agrees with the data for the real simple Lie algebra of type \(\mathbf{AII }\) in Table 1 by putting \(k=\left( \ell +1\right) /2\).

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Revised and Enlarged, with the assistance of Tudor Ratiu and Richard Cushman, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading (1978)

  2. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60. Springer, New York (1989)

    Book  Google Scholar 

  3. Birtea, P., Caşu, I., Ratiu, T.S., Turhan, M.: Stability of equilibria for the \(SO(4)\) free rigid body. J. Nonlinear Sci. 22(2), 187–212 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bolsinov, A.V.: A completeness criterion for a family of functions in involution constructed by the argument shift method. Sov. Math. Dokl. 38(1), 161–165 (1989). Translated from Russian, Dokl. Akad. Nauk SSSR. 301(5), 1037–1040 (1988)

  5. Bolsinov, A.V.: Commutative families of functions related to consistent Poisson brackets. Acta Appl. Math. 24(3), 253–274 (1991)

    Article  MathSciNet  Google Scholar 

  6. Bolsinov, A., Izosimov, A.: Singularities of bi-Hamiltonian systems. Commun. Math. Phys. 331, 507–543 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bolsinov, A.V., Oshemkov, A.A.: Bi-Hamiltonian structures and singularities of integrable systems. Regul. Chaotic Dyn. 14(4–5), 431–454 (2009)

    Article  MathSciNet  Google Scholar 

  8. Cartan, É.: Groupes simples clos et ouverts et géométrie riemannienne, J. Math. Pures Appl. 9e série, 8, 1–33 (1929)

  9. Dikii, L.A.: Hamiltonian system connected to the rotation group. Funct. Anal. Appl. 6, 326–327 (1972). Translated from Russian, Funkcional. Anal. i Priložen. 6(4), 83–84 (1972)

  10. Eliasson, L.H.: Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case. Comment. Math. Helv. 65, 4–35 (1990)

    Article  MathSciNet  Google Scholar 

  11. Fehér, L., Marshall, I.: Stability analysis of some integrable Euler equations for \(SO(n)\). J. Nonlinear Math. Phys. 10(3), 304–317 (2003)

    Article  MathSciNet  Google Scholar 

  12. Fomenko, A.T., Trofimov, V.V.: Integrable Systems on Lie Algebras and Symmetric Spaces. Gordon and Breach Science Publishers, New York (1988)

    Google Scholar 

  13. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978)

    MATH  Google Scholar 

  14. Hilgert, J., Neeb, K.-H.: Structure and Geometry of Lie Groups. Springer Monographs in Mathematics, Springer, New York (2012)

  15. Izosimov, A.: Stability in bihamiltonian systems and multidimensional rigid body. J. Geom. Phys. 62(12), 2414–2423 (2012)

    Article  MathSciNet  Google Scholar 

  16. Izosimov, A.: Stability of relative equilibria of multidimensional rigid body. Nonlinearity 27(6), 1419–1443 (2014)

    Article  MathSciNet  Google Scholar 

  17. Izosimov, A.: Algebraic geometry and stability for integrable systems. Physica D 291, 74–82 (2015)

    Article  MathSciNet  Google Scholar 

  18. Izosimov, A.: Singularities of integrable systems and algebraic curves. Int. Math. Res. Not. 2017(18), 5475–5524 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Knapp, A.W.: Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140, 2nd edn. Birkhäuser, Boston (2002)

  20. Kostant, B.: On the conjugacy of real Cartan subalgebras I. Proc. Natl. Acad. Sci. 41, 967–970 (1955)

    Article  MathSciNet  Google Scholar 

  21. Kostant, B.: On the conjugacy of real Cartan subalgebras II. In: Joseph, A., Vergne, M., Kumar, S. (eds.) Collected Papers, vol. I, pp. 20–27. Springer, Dordrecht (2009)

  22. Manakov, S.V.: Note on the integration of Euler’s equations of the dynamics of an \(N\)-dimensional rigid body. Funct. Anal. Appl. 10, 328–329 (1977). Translated from Russian, Funkcional. Anal. i Priložen. 10(4), 93–94 (1976)

  23. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, vol. 17, 2nd edn. Springer, New York (2003)

  24. Mishchenko, A.S.: Integral geodesics of a flow on Lie groups. Funct. Anal. Appl. 4, 232–235 (1970). Translated from Russian, Funkcional. Anal. i Priložen. 4(3), 73–77 (1970)

  25. Mishchenko, A.S., Fomenko, A.T.: A generalized Liouville method for the integration of Hamiltonian systems, Funct. Anal. Appl. 12(2), 113–121 (1978). Translated from Russian, Funkcional. Anal. i Priložen. 12(2), 46–56, 96 (1978)

  26. Mishchenko, A.S., Fomenko, A.T.: Euler equations on finite-dimensional Lie groups, Math. USSR-Izv. 12(2), 371–389 (1978). Translated from Russian, Izvest. Akad. Nauk SSSR, Ser. Matem. 42, 396–415 (1978)

  27. Mishchenko, A.S., Fomenko, A.T.: Integrability of Euler equations on semisimple Lie algebras. Sel. Math. Sov. 2(3), 207–291 (1982). Translated from Russian, Trudy Sem. Vektor. Tenzor. Anal. 19, 3–94 (1979)

  28. Morosi, C., Pizzocchero, L.: On the Euler equation: bi-Hamiltonian structure and integrals in involution. Lett. Math. Phys. 37, 117–135 (1996)

    Article  MathSciNet  Google Scholar 

  29. Murakami, S.: Sur la classification des algèbres de Lie réelles et simples. Osaka J. Math. 2, 291–307 (1968)

    MATH  Google Scholar 

  30. Ortega, J.-P., Ratiu, T.S.: Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, vol. 222. Birkhäuser, Boston (2004)

  31. Ratiu, T.S.: The motion of the free \(n\)-dimensional rigid body. Indiana Univ. Math. J. 29, 609–629 (1980)

    Article  MathSciNet  Google Scholar 

  32. Ratiu, T.S., et al.: A crash course in geometric mechanics. In: Montaldi, J., Ratiu, T. (eds.) Geometric Mechanics and Symmetry: the Peyresq Lectures. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  33. Ratiu, T.S., Tarama, D.: The \(U(n)\) free rigid body: integrability and stability analysis of the equilibria. J. Differ. Equ. 259, 7284–7331 (2015)

    Article  MathSciNet  Google Scholar 

  34. Spiegler, A.: Stability of Generic Equilibria of the \(2n\)-Dimensional Free Rigid Body Using the Energy-Casimir Method. Ph.D. Thesis, University of Arizona, Tucson (2004)

  35. Sugiura, M.: Conjugate classes of Cartan subalgebras in real semisimple Lie algebras. J. Math. Soc. Jpn. 11(4), 374–434 (1959); Correction, J. Math. Soc. Jpn. 23(2), 379–383 (1971)

  36. Vey, J.: Sur certains systèmes dynamiques séparables. Am. J. Math. 100(3), 591–614 (1978)

    Article  MathSciNet  Google Scholar 

  37. Williamson, J.: On an algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 58, 141–163 (1936)

    Article  MathSciNet  Google Scholar 

  38. Nguyen Tien Zung: Symplectic topology of integrable Hamiltonian systems, I: Arnold–Liouville with singularities. Compos. Math. 101(2), 179–215 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Alexey Bolsinov for his interests and comments on the present work and Nobutaka Bomuki for his comment on Corollary 4.7. We also thank the referee for the valuable comments. We are grateful to Ritsumeikan University, Shanghai Jiao Tong University, and NCCR SwissMAP grant for facilitating our collaboration.

Funding

The first author is partially supported by the National Natural Science Foundation of China Grant Number 11871334 and NCCR Swiss MAP grant of the Swiss National Science Foundation. The second author is partially supported by Grant for Basic Science Research Projects from The Sumitomo Foundation and by JSPS KAKENHI Grant Number JP19K14540.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Tarama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Computational details for the linearization

Appendix: Computational details for the linearization

Each basis element of \(T_X{\mathcal {O}}\) in (4.3) is given in the form \(\mathrm {ad}_Y^{*} X\), where Y is one of the elements (2.5). By Lemmas 2.22.32.4, the vector Y is expressed as either \(\displaystyle \frac{\eta +{\overline{\eta }}}{2}\) or \(\displaystyle \frac{\eta -{\overline{\eta }}}{2\sqrt{-1}}\), where \(\eta \in {\mathfrak {g}}_{\delta }\) for some \(\delta \in \Delta \). Recall that \({\overline{\eta }}\in {\mathfrak {g}}_{\overline{\delta }}\) by the same lemmas.

Proof of the formulas (4.4), (4.5), (4.6) Each entry of the matrix representation of \(\omega _{{\mathcal {O}}}\) in this chosen basis (4.3) of \(T_X{\mathcal {O}}\) is given by

$$\begin{aligned} \omega _{{\mathcal {O}}}\left( \mathrm {ad}_YX, \mathrm {ad}_ZX\right)&=\kappa \left( X, \left[ Y,Z\right] \right) =\kappa \left( \left[ X,Y\right] , Z\right) , \end{aligned}$$
(4.19)

where \(Y=\displaystyle \frac{\eta +{\overline{\eta }}}{2}\) or \(Y=\displaystyle \frac{\eta -{\overline{\eta }}}{2\sqrt{-1}}\) and \(Z=\displaystyle \frac{\zeta +{\overline{\zeta }}}{2}\) or \(Z=\displaystyle \frac{\zeta -{\overline{\zeta }}}{2\sqrt{-1}}\), with \(\eta \in {\mathfrak {g}}_{\delta }\), \(\zeta \in {\mathfrak {g}}_{\epsilon }\) for some \(\delta , \epsilon \in \Delta \).

For \(Y=\displaystyle \frac{\eta +{\overline{\eta }}}{2}\) and \(Z=\displaystyle \frac{\zeta +{\overline{\zeta }}}{2}\), we have

$$\begin{aligned} \omega _{{\mathcal {O}}}\left( \mathrm {ad}_YX, \mathrm {ad}_ZX\right)&=\frac{1}{4}\kappa \left( \left[ X, \eta +{\overline{\eta }}\right] , \zeta +{\overline{\zeta }}\right) =\frac{1}{4}\kappa \left( \delta (X)\eta +\overline{\delta (X)}{\overline{\eta }}, \zeta +{\overline{\zeta }}\right) \nonumber \\&=\frac{1}{4}\left( \delta (X)\left( \kappa (\eta , \zeta )+\kappa (\eta , {\overline{\zeta }})\right) +\overline{\delta (X)}\left( \kappa ({\overline{\eta }}, \zeta ) +\kappa ({\overline{\eta }}, {\overline{\zeta }})\right) \right) . \end{aligned}$$
(4.20)

Similarly, if \(Y=\displaystyle \frac{\eta +{\overline{\eta }}}{2}\) and \(Z=\displaystyle \frac{\zeta -{\overline{\zeta }}}{2\sqrt{-1}}\), we have

$$\begin{aligned} \omega _{{\mathcal {O}}}\left( \mathrm {ad}_YX, \mathrm {ad}_ZX\right) =\frac{1}{4\sqrt{-1}}\left( \delta (X)\left( \kappa (\eta , \zeta )- \kappa (\eta , {\overline{\zeta }})\right) +\overline{\delta (X)} \left( \kappa ({\overline{\eta }}, \zeta )- \kappa ({\overline{\eta }}, {\overline{\zeta }})\right) \right) .\nonumber \\ \end{aligned}$$
(4.21)

For \(Y=\displaystyle \frac{\eta -{\overline{\eta }}}{2\sqrt{-1}}\) and \(Z=\displaystyle \frac{\zeta -{\overline{\zeta }}}{2\sqrt{-1}}\), we have

$$\begin{aligned} \omega _{{\mathcal {O}}}\left( \mathrm {ad}_YX, \mathrm {ad}_ZX\right) =-\frac{1}{4}\left( \delta (X)\left( \kappa (\eta , \zeta )- \kappa (\eta , {\overline{\zeta }})\right) - \overline{\delta (X)}\left( \kappa ({\overline{\eta }}, \zeta )- \kappa ({\overline{\eta }}, {\overline{\zeta }})\right) \right) .\nonumber \\ \end{aligned}$$
(4.22)

Note that \(\kappa \left( \eta , \zeta \right) \) and \(\kappa \left( {\overline{\eta }}, {\overline{\zeta }}\right) \) are nonzero only if \(\delta +\epsilon =0\); similarly, \(\kappa \left( \eta , {\overline{\zeta }}\right) \) and \(\kappa \left( {\overline{\eta }}, \zeta \right) \) are nonzero only if \(\delta +{\overline{\epsilon }}=0\). As a result, the matrix representation of the orbit symplectic form \(\omega _{{\mathcal {O}}}\) is a block diagonal matrix whose blocks are in (4.4), (4.5), (4.6).

By the expression (3.9) of the orbit symplectic form \(\omega _{{\mathcal {O}}}\), formula (4.4) is obtained from the following computation:

$$\begin{aligned} \omega _{{\mathcal {O}}}\left( \mathrm {ad}_{u_{\alpha }}X, \mathrm {ad}_{\theta u_{\alpha }}X\right) =\kappa \left( X, \left[ u_{\alpha }, \theta u_{\alpha }\right] \right) =\kappa \left( \left[ X, u_{\alpha }\right] , \theta u_{\alpha }\right) =\alpha (X)\kappa \left( u_{\alpha }, \theta u_{\alpha }\right) . \end{aligned}$$

We used \(u_{\alpha }\in {\mathfrak {g}}_{\alpha }^{{\mathbb {C}}}\).

Similarly, formula (4.5) is obtained as follows:

$$\begin{aligned} \omega _{{\mathcal {O}}}\left( \mathrm {ad}_{v_{\beta }^r}X, \mathrm {ad}_{v_{\beta }^i}X\right)&=\kappa \left( X, \left[ v_{\beta }^r, v_{\beta }^i\right] \right) =\kappa \left( X, \left[ \frac{v_{\beta }+\overline{v_{\beta }}}{2}, \frac{v_{\beta }-\overline{v_{\beta }}}{2\sqrt{-1}}\right] \right) \\&=\frac{\sqrt{-1}}{2}\kappa \left( X, \left[ v_{\beta }, \overline{v_{\beta }}\right] \right) =\frac{\sqrt{-1}}{2}\kappa \left( \left[ X, v_{\beta }\right] , \overline{v_{\beta }}\right) \\&=\frac{\sqrt{-1}}{2}\beta (X)\kappa \left( v_{\beta }, \overline{v_{\beta }}\right) . \end{aligned}$$

Here, we used \(v_{\beta }\in {\mathfrak {g}}_{\beta }^{{\mathbb {C}}}\).

Formula (4.6) is obtained from the following computations:

$$\begin{aligned} \omega _{{\mathcal {O}}}&\left( \mathrm {ad}_{w_{\gamma }^r}X, \mathrm {ad}_{w_{\gamma }^i}X\right) \\&{\mathop {=}\limits ^{(4.21)}} \frac{1}{4\sqrt{-1}}\left( \gamma (X)\left( \kappa (w_{\gamma }, w_{\gamma })- \kappa (w_{\gamma },\overline{w_{\gamma }}\right) +\overline{\gamma (X)}\left( \kappa (\overline{w_{\gamma }}, w_{\gamma })- \kappa (\overline{w_{\gamma }},\overline{w_{\gamma }}\right) \right) =0,\\ \omega _{{\mathcal {O}}}&\left( \mathrm {ad}_{w_{\gamma }^r}X, \mathrm {ad}_{w_{-\gamma }^r}X\right) \\&{\mathop {=}\limits ^{(4.20)}}\frac{1}{4}\left( \gamma (X) \left( \kappa \left( w_{\gamma }, w_{-\gamma }\right) + \kappa \left( w_{\gamma }, \overline{w_{-\gamma }}\right) \right) \right. \\&\qquad \qquad \qquad \quad \left. + \overline{\gamma (X)}\left( \kappa \left( \overline{w_{\gamma }}, w_{-\gamma }\right) + \kappa \left( \overline{w_{\gamma }}, \overline{w_{-\gamma }}\right) \right) \right) \\&\;\;\, =\frac{1}{4}\left( \gamma (X)\kappa \left( w_{\gamma }, w_{-\gamma }\right) + \overline{\gamma (X)}\kappa \left( \overline{w_{\gamma }}, \overline{w_{-\gamma }}\right) \right) =\frac{1}{2}\mathrm {Re}\left( \gamma (X)\kappa (w_{\gamma },w_{-\gamma }) \right) , \\ \omega _{{\mathcal {O}}}&\left( \mathrm {ad}_{w_{\gamma }^r}X, \mathrm {ad}_{w_{-\gamma }^i}X\right) \\&{\mathop {=}\limits ^{(4.21)}}\frac{1}{4\sqrt{-1}} \left( \gamma (X) \left( \kappa \left( w_{\gamma }, w_{-\gamma }\right) -\kappa \left( w_{\gamma }, \overline{w_{-\gamma }}\right) \right) \right. \\&\qquad \qquad \qquad \quad \left. + \overline{\gamma (X)} \left( \kappa \left( \overline{w_{\gamma }}, w_{-\gamma }\right) - \kappa \left( \overline{w_{\gamma }}, \overline{w_{-\gamma }}\right) \right) \right) \\&\;\;\,=\frac{1}{4\sqrt{-1}} \left( \gamma (X) \kappa \left( w_{\gamma }, w_{-\gamma }\right) - \overline{\gamma (X)} \kappa \left( \overline{w_{\gamma }}, \overline{w_{-\gamma }}\right) \right) =\frac{1}{2}\mathrm {Im}\left( \gamma (X)\kappa \left( w_{\gamma }, w_{-\gamma }\right) \right) , \\ \omega _{{\mathcal {O}}}&\left( \mathrm {ad}_{w_{\gamma }^i}X, \mathrm {ad}_{w_{-\gamma }^r}X\right) \\&{\mathop {=}\limits ^{(4.21)}} \frac{1}{4\sqrt{-1}}\kappa \left( \gamma (X) \left( \kappa (w_{\gamma }, w_{-\gamma })+ \kappa (w_{\gamma }, \overline{w_{-\gamma }})\right) \right. \\&\qquad \qquad \qquad \quad \left. - \overline{\gamma (X)} \left( \kappa (\overline{w_{\gamma }}, w_{-\gamma })+\kappa (\overline{w_{\gamma }}, \overline{w_{-\gamma }})\right) \right) \\&\;\;\,=\frac{1}{4\sqrt{-1}}\kappa \left( \gamma (X) \kappa (w_{\gamma }, w_{-\gamma }) - \overline{\gamma (X)} \kappa (\overline{w_{\gamma }}, \overline{w_{-\gamma }}) \right) =\frac{1}{2}\mathrm {Im} \left( \gamma (X) \kappa (w_{\gamma }, w_{-\gamma }) \right) , \\ \omega _{{\mathcal {O}}}&\left( \mathrm {ad}_{w_{\gamma }^i}X, \mathrm {ad}_{w_{-\gamma }^i}X\right) \\&{\mathop {=}\limits ^{(4.22)}} -\frac{1}{4}\left( \gamma (X)\left( \kappa (w_{\gamma }, w_{-\gamma })-\kappa (w_{\gamma }, \overline{w_{-\gamma }})\right) \right. \\&\qquad \qquad \qquad \quad \left. - \overline{\gamma (X)}\left( \kappa (\overline{w_{\gamma }}, w_{-\gamma })- \kappa (\overline{w_{\gamma }}, \overline{w_{-\gamma }})\right) \right) \\&\;\;\,=-\frac{1}{4}\left( \gamma (X)\kappa (w_{\gamma }, w_{-\gamma }) +\overline{\gamma (X)}\kappa (\overline{w_{\gamma }}, \overline{w_{-\gamma }}) \right) =-\frac{1}{2}\mathrm {Re}\left( \gamma (X)\kappa (w_{\gamma }, w_{-\gamma })\right) , \\&\omega _{{\mathcal {O}}}\left( \mathrm {ad}_{w_{-\gamma }^r}X, \mathrm {ad}_{w_{-\gamma }^i}X\right) \\&{\mathop {=}\limits ^{(4.21)}} \frac{1}{4\sqrt{-1}}\left( -\gamma (X)\left( \kappa (w_{-\gamma }, w_{-\gamma })- \kappa (w_{-\gamma }, \overline{w_{-\gamma }})\right) \right. \\&\qquad \qquad \qquad \quad \left. - \overline{\gamma (X)}\left( \kappa (\overline{w_{-\gamma }}, w_{-\gamma })- \kappa (\overline{w_{-\gamma }}, \overline{w_{-\gamma }})\right) \right) =0. \end{aligned}$$

Here, we used the consequences of Lemma 2.4: \(w_{\gamma }\in {\mathfrak {g}}_{\gamma }^{{\mathbb {C}}}\), \(\overline{w_{\gamma }}\in {\mathfrak {g}}_{{\overline{\gamma }}}^{{\mathbb {C}}}\), \({\mathfrak {g}}_{\gamma }\perp _{\kappa }{\mathfrak {g}}_{\gamma }\), \({\mathfrak {g}}_{\pm \gamma }\perp _{\kappa } {\mathfrak {g}}_{\pm {\overline{\gamma }}}\), where all different signs can be taken.

Proof of formulas (4.11), (4.12), (4.13) Each entry of the matrix representation of \(\mathrm {Hess}_X\left[ H|_{{\mathcal {O}}}\right] \) in the basis (4.3) of \(T_X{\mathcal {O}}\) is given by (4.10), where \(Y=\displaystyle \frac{\eta +{\overline{\eta }}}{2}\) or \(Y=\displaystyle \frac{\eta -{\overline{\eta }}}{2\sqrt{-1}}\) and \(Z=\displaystyle \frac{\zeta +{\overline{\zeta }}}{2}\) or \(Z=\displaystyle \frac{\zeta -{\overline{\zeta }}}{2\sqrt{-1}}\), with \(\eta \in {\mathfrak {g}}_{\delta }\), \(\zeta \in {\mathfrak {g}}_{\epsilon }\) for some \(\delta , \epsilon \in \Delta \).

For \(Y=\displaystyle \frac{\eta +{\overline{\eta }}}{2}\) and \(Z=\displaystyle \frac{\zeta +{\overline{\zeta }}}{2}\), we have

$$\begin{aligned} \kappa&\left( \mathrm {ad}_YX, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}}\right] \left( \mathrm {ad}_ZX\right) \right) =\kappa \left( \mathrm {ad}_{(\eta +{\overline{\eta }})/2}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}}\right] \left( \mathrm {ad}_{(\zeta +{\overline{\zeta }})/2}X\right) \right) \nonumber \\&=\frac{1}{4}\kappa \left( \mathrm {ad}_{(\eta +{\overline{\eta }})}X, \varphi _{a,b}\left( \mathrm {ad}_{(\zeta +{\overline{\zeta }})}X\right) - \mathrm {ad}_{(\zeta +{\overline{\zeta }})}\left( D(X)\right) \right) \nonumber \\&=\frac{1}{4}\kappa \left( \delta (X)\eta +\overline{\delta (X)}{\overline{\eta }}, \epsilon (X)\varphi _{a,b}(\zeta )+\overline{\epsilon (X)}\varphi _{a,b} ({\overline{\zeta }})-\epsilon (D(X))\zeta -\overline{\epsilon (D(X))} {\overline{\zeta }}\right) \nonumber \\&=\frac{1}{4}\kappa \left( \delta (X)\eta +\overline{\delta (X)}{\overline{\eta }}, \epsilon (X)\frac{\epsilon (b)}{\epsilon (a)}\zeta +\overline{\epsilon (X)} \frac{\overline{\epsilon (b)}}{\overline{\epsilon (a)}}{\overline{\zeta }}- \epsilon (D(X))\zeta -\overline{\epsilon (D(X))}{\overline{\zeta }}\right) \nonumber \\&=\frac{1}{4}\kappa \left( \delta (X)\eta +\overline{\delta (X)}{\overline{\eta }}, \left( \epsilon (X)\frac{\epsilon (b)}{\epsilon (a)}-\epsilon (D(X))\right) \zeta +\overline{\left( \epsilon (X)\frac{\epsilon (b)}{\epsilon (a)}- \epsilon (D(X))\right) }{\overline{\zeta }}\right) \nonumber \\&=\frac{1}{4} \left( \delta (X)\left( \epsilon (X)\frac{\epsilon (b)}{\epsilon (a)}- \epsilon (D(X))\right) \kappa (\eta ,\zeta ) +\delta (X)\overline{\left( \epsilon (X)\frac{\epsilon (b)}{\epsilon (a)}- \epsilon (D(X))\right) }\kappa (\eta ,{\overline{\zeta }})\right. \nonumber \\&\qquad \left. +\overline{\delta (X)}\left( \epsilon (X)\frac{\epsilon (b)}{\epsilon (a)}-\epsilon (D(X))\right) \kappa ({\overline{\eta }},\zeta ) +\overline{\delta (X)}\overline{\left( \epsilon (X) \frac{\epsilon (b)}{\epsilon (a)}- \epsilon (D(X))\right) }\kappa ({\overline{\eta }},{\overline{\zeta }}) \right) . \end{aligned}$$
(4.23)

Similarly, if \(Y=\displaystyle \frac{\eta +{\overline{\eta }}}{2}\) and \(Z=\displaystyle \frac{\zeta -{\overline{\zeta }}}{2\sqrt{-1}}\), we have

$$\begin{aligned} \kappa&\left( \mathrm {ad}_YX, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}}\right] \left( \mathrm {ad}_ZX\right) \right) =\kappa \left( \mathrm {ad}_{(\eta +{\overline{\eta }})/2}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}}\right] \left( \mathrm {ad}_{(\zeta -{\overline{\zeta }})/2\sqrt{-1}}X\right) \right) \nonumber \\&=\frac{1}{4\sqrt{-1}} \left( \delta (X)\left( \epsilon (X)\frac{\epsilon (b)}{\epsilon (a)}- \epsilon (D(X))\right) \kappa (\eta ,\zeta )\right. \nonumber \\&\qquad \qquad \qquad \left. -\delta (X)\overline{\left( \epsilon (X)\frac{\epsilon (b)}{\epsilon (a)}- \epsilon (D(X))\right) }\kappa (\eta ,{\overline{\zeta }})\right. \nonumber \\&\qquad \left. +\overline{\delta (X)}\left( \epsilon (X)\frac{\epsilon (b)}{\epsilon (a)}-\epsilon (D(X))\right) \kappa ({\overline{\eta }},\zeta ) -\overline{\delta (X)}\overline{\left( \epsilon (X) \frac{\epsilon (b)}{\epsilon (a)}- \epsilon (D(X))\right) }\kappa ({\overline{\eta }},{\overline{\zeta }}) \right) . \end{aligned}$$
(4.24)

If \(Y=\displaystyle \frac{\eta -{\overline{\eta }}}{2\sqrt{-1}}\) and \(Z=\displaystyle \frac{\zeta -{\overline{\zeta }}}{2\sqrt{-1}}\), we have

$$\begin{aligned} \kappa&\left( \mathrm {ad}_YX, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}}\right] \left( \mathrm {ad}_ZX\right) \right) =\kappa \left( \mathrm {ad}_{(\eta -{\overline{\eta }})/2\sqrt{-1}}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}}\right] \left( \mathrm {ad}_{(\zeta -{\overline{\zeta }})/2\sqrt{-1}}X\right) \right) \nonumber \\&=-\frac{1}{4}\left( \delta (X)\left( \epsilon (X)\frac{\epsilon (b)}{\epsilon (a)}- \epsilon (D(X))\right) \kappa (\eta ,\zeta ) -\delta (X)\overline{\left( \epsilon (X)\frac{\epsilon (b)}{\epsilon (a)}- \epsilon (D(X))\right) }\kappa (\eta ,{\overline{\zeta }})\right. \nonumber \\&\qquad \left. -\overline{\delta (X)}\left( \epsilon (X)\frac{\epsilon (b)}{\epsilon (a)}-\epsilon (D(X))\right) \kappa ({\overline{\eta }},\zeta ) +\overline{\delta (X)}\overline{\left( \epsilon (X) \frac{\epsilon (b)}{\epsilon (a)}- \epsilon (D(X))\right) }\kappa ({\overline{\eta }},{\overline{\zeta }}) \right) . \end{aligned}$$
(4.25)

In the above computations, we used the formulas

$$\begin{aligned} \varphi _{a,b}\left( \eta \right) = \displaystyle \frac{\alpha (b)}{\alpha (a)}\eta , \qquad \varphi _{a,b}\left( {\overline{\eta }}\right) = \displaystyle \frac{\overline{\alpha (b)}}{\overline{\alpha (a)}} {\overline{\eta }}, \qquad \varphi _{a,b}\left( \zeta \right) = \displaystyle \frac{\alpha (b)}{\alpha (a)}\zeta , \qquad \varphi _{a,b}\left( {\overline{\zeta }}\right) = \displaystyle \frac{\overline{\alpha (b)}}{\overline{\alpha (a)}} {\overline{\zeta }}, \end{aligned}$$

which follow from \(\eta \in {\mathfrak {g}}_{\delta }\), \({\overline{\eta }}\in {\mathfrak {g}}_{{\overline{\delta }}}\), \(\zeta \in {\mathfrak {g}}_{\epsilon }\), \({\overline{\zeta }}\in {\mathfrak {g}}_{{\overline{\epsilon }}}\).

Note that \(\kappa \left( \eta , \zeta \right) \) and \(\kappa \left( {\overline{\eta }}, {\overline{\zeta }}\right) \) are nonzero only if \(\delta +\epsilon =0\) and \(\kappa \left( \eta , {\overline{\zeta }}\right) \) and \(\kappa \left( {\overline{\eta }}, \zeta \right) \) are nonzero only if \(\delta +{\overline{\epsilon }}=0\). As a result, the matrix representation of the Hessian \(\mathrm {Hess}_X\left[ H|_{{\mathcal {O}}}\right] \) is a block diagonal matrix whose blocks are given in formulas (4.11), (4.12), (4.13).

By the expression (4.10) of the Hessian \(\mathrm {Hess}_X\left[ H|_{{\mathcal {O}}}\right] \), formula (4.11) is obtained from the following computations:

$$\begin{aligned} \kappa \left( \mathrm {ad}_{u_{\alpha }}X, \varphi _{a,b} \left( \mathrm {ad}_{u_{\alpha }}X\right) -\mathrm {ad}_{u_{\alpha }}D(X)\right)&=\kappa \left( -\alpha (X) u_{\alpha }, -\varphi _{a,b}\left( \alpha (X) u_{\alpha }\right) +\alpha (D(X)) u_{\alpha }\right) \\&=\kappa \left( -\alpha (X) u_{\alpha }, -\alpha (X) \frac{\alpha (b)}{\alpha (a)} u_{\alpha }+\alpha (D(X)) u_{\alpha }\right) \\&=\alpha (X)\left( \alpha (X)\frac{\alpha (b)}{\alpha (a)}-\alpha (D(X))\right) \kappa \left( u_{\alpha }, u_{\alpha }\right) \\&=0, \\ \kappa \left( \mathrm {ad}_{u_{\alpha }}X, \varphi _{a,b} \left( \mathrm {ad}_{\theta u_{\alpha }}X\right) - \mathrm {ad}_{\theta u_{\alpha }}D(X)\right)&=\kappa \left( -\alpha (X) u_{\alpha }, \varphi _{a,b}\left( \alpha (X) \theta u_{\alpha }\right) -\alpha (D(X)) \theta u_{\alpha }\right) \\&=\kappa \left( -\alpha (X) u_{\alpha }, \alpha (X) \frac{\alpha (b)}{\alpha (a)} \theta u_{\alpha }-\alpha (D(X)) \theta u_{\alpha }\right) \\&=-\alpha (X)\left( \alpha (X)\frac{\alpha (b)}{\alpha (a)}-\alpha (D(X))\right) \kappa \left( u_{\alpha }, \theta u_{\alpha }\right) , \\ \kappa \left( \mathrm {ad}_{u_{\alpha }}\theta X, \varphi _{a,b}\left( \mathrm {ad}_{\theta u_{\alpha }}X\right) - \mathrm {ad}_{\theta u_{\alpha }}D(X)\right)&=\kappa \left( \alpha (X) \theta u_{\alpha }, \varphi _{a,b}\left( \alpha (X) \theta u_{\alpha }\right) -\alpha (D(X)) \theta u_{\alpha }\right) \\&=\kappa \left( \alpha (X) \theta u_{\alpha }, \alpha (X) \frac{\alpha (b)}{\alpha (a)} \theta u_{\alpha }-\alpha (D(X)) \theta u_{\alpha }\right) \\&=\alpha (X)\left( \alpha (X)\frac{\alpha (b)}{\alpha (a)}-\alpha (D(X))\right) \kappa \left( \theta u_{\alpha }, \theta u_{\alpha }\right) \\&=0. \end{aligned}$$

Here, we used the facts \(u_{\alpha }\in {\mathfrak {g}}_{\alpha }^{{\mathbb {C}}}\), \(\theta u_{\alpha }\in {\mathfrak {g}}_{-\alpha }^{{\mathbb {C}}}\), \({\mathfrak {g}}_{\alpha }\perp _{\kappa }{\mathfrak {g}}_{\alpha }\), \({\mathfrak {g}}_{-\alpha }\perp _{\kappa }{\mathfrak {g}}_{-\alpha }\) and the formulas

$$\begin{aligned} \varphi _{a,b}\left( u_{\alpha }\right) = \displaystyle \frac{\alpha (b)}{\alpha (a)}u_{\alpha }, \qquad \varphi _{a,b}\left( \theta u_{\alpha }\right) = \displaystyle \frac{\alpha (b)}{\alpha (a)}\theta u_{\alpha }, \end{aligned}$$

which follow from (3.1) and (3.2).

Similarly, formula (4.12) is obtained by

$$\begin{aligned} \kappa&\left( \mathrm {ad}_{v_{\beta }^r}X, \varphi _{a,b}\left( \mathrm {ad}_{v_{\beta }^r}X\right) -\mathrm {ad}_{v_{\beta }^r}D(X)\right) \\&=\kappa \left( -\beta (X) \sqrt{-1}v_{\beta }^i, -\varphi _{a,b}\left( \beta (X) \sqrt{-1}v_{\beta }^i\right) +\beta (X) \sqrt{-1}v_{\beta }^i\right) \\&=\kappa \left( -\beta (X) \sqrt{-1}v_{\beta }^i, -\beta (X) \sqrt{-1} \frac{\beta (b)}{\beta (a)}v_{\beta }^i+\beta (X) \sqrt{-1}v_{\beta }^i\right) \\&=-\beta (X)\left( \beta (X)\frac{\beta (b)}{\beta (a)}-\beta (D(X))\right) \kappa \left( v_{\beta }^i, v_{\beta }^i\right) \\&=\frac{1}{4}\beta (X)\left( \beta (X)\frac{\beta (b)}{\beta (a)} -\beta (D(X))\right) \kappa \left( v_{\beta }-\overline{v_{\beta }}, v_{\beta }-\overline{v_{\beta }}\right) \\&=\frac{1}{4}\beta (X)\left( \beta (X)\frac{\beta (b)}{\beta (a)} -\beta (D(X))\right) \left( \kappa \left( v_{\beta },v_{\beta }\right) -2\kappa \left( v_{\beta }, \overline{v_{\beta }}\right) +\kappa \left( \overline{v_{\beta }}, \overline{v_{\beta }}\right) \right) \\&=-\frac{1}{2}\beta (X)\left( \beta (X)\frac{\beta (b)}{\beta (a)} -\beta (D(X))\right) \kappa \left( v_{\beta }, \overline{v_{\beta }}\right) , \\ \kappa&\left( \mathrm {ad}_{v_{\beta }^r}X, \varphi _{a,b}\left( \mathrm {ad}_{v_{\beta }^i}X\right) -\mathrm {ad}_{v_{\beta }^i}D(X)\right) \\&=\kappa \left( -\beta (X)\sqrt{-1}v_{\beta }^i, \varphi _{a,b}\left( \beta (X)\sqrt{-1} v_{\beta }^r\right) -\beta (D(X))\sqrt{-1}v_{\beta }^r\right) \\&=\kappa \left( -\beta (X)\sqrt{-1}v_{\beta }^i, \beta (X)\sqrt{-1} \frac{\beta (b)}{\beta (a)}v_{\beta }^r-\beta (D(X))\sqrt{-1}v_{\beta }^r\right) \\&=\beta (X)\left( \beta (X)\frac{\beta (b)}{\beta (a)}-\beta (D(X))\right) \kappa \left( v_{\beta }^i, v_{\beta }^r\right) \\&=\frac{1}{4\sqrt{-1}}\beta (X)\left( \beta (X)\frac{\beta (b)}{\beta (a)}- \beta (D(X))\right) \kappa \left( v_{\beta }-\overline{v_{\beta }}, v_{\beta }+\overline{v_{\beta }}\right) \\&=\frac{1}{4\sqrt{-1}}\beta (X)\left( \beta (X)\frac{\beta (b)}{\beta (a)}- \beta (D(X))\right) \left( \kappa \left( v_{\beta },v_{\beta }\right) + \kappa \left( \overline{v_{\beta }}, \overline{v_{\beta }}\right) \right) =0, \\ \kappa&\left( \mathrm {ad}_{v_{\beta }^i}X, \varphi _{a,b}\left( \mathrm {ad}_{v_{\beta }^i}X\right) -\mathrm {ad}_{v_{\beta }^i}D(X)\right) \\&=\kappa \left( \beta (X)\sqrt{-1}v_{\beta }^r, \varphi _{a,b}\left( \beta (X) \sqrt{-1}v_{\beta }^r\right) -\beta (D(X))\sqrt{-1}v_{\beta }^r\right) \\&=\kappa \left( \beta (X)\sqrt{-1}v_{\beta }^i, \beta (X)\sqrt{-1} \frac{\beta (b)}{\beta (a)}v_{\beta }^r-\beta (D(X))\sqrt{-1}v_{\beta }^r\right) \\&=-\beta (X)\left( \beta (X)\frac{\beta (b)}{\beta (a)}-\beta (D(X))\right) \kappa \left( v_{\beta }^r, v_{\beta }^r\right) \\&=-\frac{1}{4}\beta (X)\left( \beta (X)\frac{\beta (b)}{\beta (a)} -\beta (D(X))\right) \kappa \left( v_{\beta }+\overline{v_{\beta }}, v_{\beta }+\overline{v_{\beta }}\right) \\&=-\frac{1}{4}\beta (X)\left( \beta (X)\frac{\beta (b)}{\beta (a)} -\beta (D(X))\right) \left( \kappa \left( v_{\beta },v_{\beta }\right) +2\kappa \left( v_{\beta }, \overline{v_{\beta }}\right) +\kappa \left( \overline{v_{\beta }}, \overline{v_{\beta }}\right) \right) \\&=-\frac{1}{2}\beta (X)\left( \beta (X)\frac{\beta (b)}{\beta (a)} -\beta (D(X))\right) \kappa \left( v_{\beta }, \overline{v_{\beta }}\right) . \end{aligned}$$

Here, we used the fact \(v_{\beta }\in {\mathfrak {g}}_{\beta }^{{\mathbb {C}}}\), \(\overline{v_{\beta }}\in {\mathfrak {g}}_{-\beta }^{{\mathbb {C}}}\), \({\mathfrak {g}}_{\beta }\perp _{\kappa }{\mathfrak {g}}_{\beta }\), \({\mathfrak {g}}_{-\beta }\perp _{\kappa }{\mathfrak {g}}_{-\beta }\) and the formulas

$$\begin{aligned} \varphi _{a,b}\left( v_{\beta }\right) = \displaystyle \frac{\beta (b)}{\beta (a)}v_{\beta }, \qquad \varphi _{a,b}\left( \overline{v_{\beta }}\right) = \displaystyle \frac{\beta (b)}{\beta (a)}\overline{v_{\beta }}, \end{aligned}$$

which follow from (3.1) and (3.2).

Formula (4.13) is obtained through the following computations:

$$\begin{aligned} \kappa&\left( \mathrm {ad}_{w_{\gamma }^r}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}}\right] \left( \mathrm {ad}_{w_{\gamma }^r}X\right) \right) \\&{\mathop {=}\limits ^{(4.23)}} \frac{1}{4} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{\gamma })\right. \\&\qquad \left. +\gamma (X)\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X)) \right) }\kappa (w_{\gamma },\overline{w_{\gamma }})\right. \\&\qquad \left. +\overline{\gamma (X)} \left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) \kappa (\overline{w_{\gamma }},w_{\gamma })\right. \\&\qquad \left. +\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{\gamma }},\overline{w_{\gamma }}) \right) =0, \\ \kappa&\left( \mathrm {ad}_{w_{\gamma }^r}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}} \right] \left( \mathrm {ad}_{w_{\gamma }^i}X\right) \right) \\&{\mathop {=}\limits ^{(4.24)}} \frac{1}{4\sqrt{-1}} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{\gamma })\right. \\&\qquad \left. -\gamma (X)\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X)) \right) }\kappa (w_{\gamma },\overline{w_{\gamma }})\right. \nonumber \\&\qquad \left. +\overline{\gamma (X)}\left( \gamma (X) \frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) \kappa (\overline{w_{\gamma }},w_{\gamma })\right. \\&\qquad \left. -\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{\gamma }},\overline{w_{\gamma }}) \right) =0, \\ \kappa&\left( \mathrm {ad}_{w_{\gamma }^r}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}} \right] \left( \mathrm {ad}_{w_{-\gamma }^r}X\right) \right) \\&{\mathop {=}\limits ^{(4.23)}} -\frac{1}{4} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{-\gamma }\right. )\\&\left. \qquad +\gamma (X)\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X)) \right) }\kappa (w_{\gamma },\overline{w_{-\gamma }})\right. \\&\qquad \left. +\overline{\gamma (X)}\left( \gamma (X) \frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) \kappa (\overline{w_{\gamma }},w_{-\gamma })\right. \\&\qquad \left. +\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{\gamma }},\overline{w_{-\gamma }}) \right) \\&\;\;\,=-\frac{1}{4} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{-\gamma })\right. \\&\qquad \left. +\overline{\gamma (X)} \overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)} -\gamma (D(X))\right) }\kappa (\overline{w_{\gamma }}, \overline{w_{-\gamma }}) \right) \\&\;\;\,=-\frac{1}{2}\mathrm {Re}\left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{-\gamma })\right) , \\ \kappa&\left( \mathrm {ad}_{w_{\gamma }^r}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}} \right] \left( \mathrm {ad}_{w_{-\gamma }^i}X\right) \right) \\&{\mathop {=}\limits ^{(4.24)}} -\frac{1}{4\sqrt{-1}} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{-\gamma })\right. \\&\qquad \left. -\gamma (X)\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X)) \right) }\kappa (w_{\gamma },\overline{w_{-\gamma }})\right. \nonumber \\&\qquad \left. +\overline{\gamma (X)}\left( \gamma (X) \frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) \kappa (\overline{w_{\gamma }},w_{-\gamma })\right. \\&\qquad \left. -\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{\gamma }},\overline{w_{-\gamma }}) \right) \\&\;\;\,=-\frac{1}{4\sqrt{-1}} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{-\gamma })\right. \\&\qquad \left. -\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{\gamma }},\overline{w_{-\gamma }}) \right) \\&\;\;\,=-\frac{1}{2}\mathrm {Im}\left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{-\gamma })\right) , \\ \end{aligned}$$
$$\begin{aligned} \kappa&\left( \mathrm {ad}_{w_{\gamma }^i}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}} \right] \left( \mathrm {ad}_{w_{\gamma }^i}X\right) \right) \\&{\mathop {=}\limits ^{(4.25)}} -\frac{1}{4} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{\gamma })\right. \\&\qquad \left. -\gamma (X)\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X)) \right) }\kappa (w_{\gamma },\overline{w_{\gamma }})\right. \nonumber \\&\qquad \left. -\overline{\gamma (X)}\left( \gamma (X) \frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) \kappa (\overline{w_{\gamma }},w_{\gamma })\right. \\&\qquad \left. +\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{\gamma }},\overline{w_{\gamma }}) \right) =0, \\ \kappa&\left( \mathrm {ad}_{w_{\gamma }^i}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}} \right] \left( \mathrm {ad}_{w_{-\gamma }^r}X\right) \right) \\&{\mathop {=}\limits ^{(4.24)}} -\frac{1}{4\sqrt{-1}} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{-\gamma })\right. \\&\qquad \left. +\gamma (X)\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X)) \right) }\kappa (w_{\gamma },\overline{w_{-\gamma }})\right. \nonumber \\&\qquad \left. -\overline{\gamma (X)}\left( \gamma (X) \frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) \kappa (\overline{w_{\gamma }},w_{-\gamma })\right. \\&\qquad \left. -\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{\gamma }},\overline{w_{-\gamma }}) \right) \\&\;\;\,=-\frac{1}{4\sqrt{-1}} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{-\gamma })\right. \\&\qquad \left. -\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{\gamma }},\overline{w_{-\gamma }}) \right) \\&\;\;\,=-\frac{1}{2}\mathrm {Im}\left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{-\gamma })\right) , \\ \kappa&\left( \mathrm {ad}_{w_{\gamma }^i}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}} \right] \left( \mathrm {ad}_{w_{-\gamma }^i}X\right) \right) \\&{\mathop {=}\limits ^{(4.25)}} \frac{1}{4} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{-\gamma })\right. \\&\qquad \left. -\gamma (X)\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X)) \right) }\kappa (w_{\gamma },\overline{w_{-\gamma }})\right. \nonumber \\&\qquad \left. -\overline{\gamma (X)}\left( \gamma (X) \frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) \kappa (\overline{w_{\gamma }},w_{-\gamma })\right. \\&\qquad \left. +\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{\gamma }},\overline{w_{-\gamma }}) \right) \\&\;\;\,=\frac{1}{4} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{-\gamma })\right. \\&\qquad \left. +\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{\gamma }},\overline{w_{-\gamma }}) \right) \\&\;\;\,=\frac{1}{2}\mathrm {Re}\left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{\gamma },w_{-\gamma }) \right) , \\ \kappa&\left( \mathrm {ad}_{w_{-\gamma }^r}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}} \right] \left( \mathrm {ad}_{w_{-\gamma }^r}X\right) \right) \\&{\mathop {=}\limits ^{(4.23)}} \frac{1}{4} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{-\gamma },w_{-\gamma })\right. \\&\qquad \left. +\gamma (X)\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X)) \right) }\kappa (w_{-\gamma },\overline{w_{-\gamma }})\right. \\&\qquad \left. +\overline{\gamma (X)}\left( \gamma (X) \frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) \kappa (\overline{w_{-\gamma }},w_{-\gamma })\right. \\&\qquad \left. +\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{-\gamma }},\overline{w_{-\gamma }}) \right) =0,\\ \kappa&\left( \mathrm {ad}_{w_{-\gamma }^r}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}} \right] \left( \mathrm {ad}_{w_{-\gamma }^i}X\right) \right) \\&{\mathop {=}\limits ^{(4.24)}} \frac{1}{4\sqrt{-1}} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{-\gamma },w_{-\gamma })\right. \end{aligned}$$
$$\begin{aligned}&\qquad \left. -\gamma (X)\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X)) \right) }\kappa (w_{-\gamma },\overline{w_{-\gamma }})\right. \nonumber \\&\qquad \left. +\overline{\gamma (X)}\left( \gamma (X) \frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) \kappa (\overline{w_{-\gamma }},w_{-\gamma })\right. \\&\qquad \left. -\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{-\gamma }},\overline{w_{-\gamma }}) \right) =0, \\ \kappa&\left( \mathrm {ad}_{w_{-\gamma }^i}X, \mathrm {Hess}_X\left[ H|_{{\mathcal {O}}} \right] \left( \mathrm {ad}_{w_{-\gamma }^i}X\right) \right) \\&{\mathop {=}\limits ^{(4.25)}} -\frac{1}{4} \left( \gamma (X)\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X))\right) \kappa (w_{-\gamma },w_{-\gamma })\right. \\&\qquad \left. -\gamma (X)\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}-\gamma (D(X)) \right) }\kappa (w_{-\gamma },\overline{w_{-\gamma }})\right. \nonumber \\&\qquad \left. -\overline{\gamma (X)}\left( \gamma (X) \frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) \kappa (\overline{w_{-\gamma }},w_{-\gamma })\right. \\&\left. \qquad +\overline{\gamma (X)}\overline{\left( \gamma (X)\frac{\gamma (b)}{\gamma (a)}- \gamma (D(X))\right) }\kappa (\overline{w_{-\gamma }},\overline{w_{-\gamma }}) \right) =0. \end{aligned}$$

Here, we used the consequences of Lemma 2.4: \(w_{\gamma }\in {\mathfrak {g}}_{\gamma }^{{\mathbb {C}}}\), \(\overline{w_{\gamma }}\in {\mathfrak {g}}_{{\overline{\gamma }}}^{{\mathbb {C}}}\), \({\mathfrak {g}}_{\gamma }\perp _{\kappa }{\mathfrak {g}}_{\gamma }\), \({\mathfrak {g}}_{\pm \gamma }\perp _{\kappa } {\mathfrak {g}}_{\pm {\overline{\gamma }}}\), where all different signs can be taken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratiu, T.S., Tarama, D. Geodesic flows on real forms of complex semi-simple Lie groups of rigid body type. Res Math Sci 7, 32 (2020). https://doi.org/10.1007/s40687-020-00227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-020-00227-2

Keywords

Mathematics Subject Classification:

Navigation