Skip to main content
Log in

First solvation shell structure and dynamics of solvated Ca2+ in dilute aqueous ammonia by first principle approach: a QMCF MD simulation study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The investigation of solvated ion in nonaqueous or mixed solvent is a challenging task for experimental and theoretical chemistry. One of the promising approaches to elucidate the properties of solvated ion in mixed solvents is quantum mechanical charge field molecular dynamics (QMCF MD) simulation. In this study, we report the first application of QMCF MD simulation to investigate the structural and dynamical properties of solvated Ca2+ in 18.4% aqueous ammonia. Radial distribution function analysis showed that the average distances of Ca2+–N and Ca2+–O are 2.55 and 2.74 Å, respectively. The mean residence times for water and ammonia in the first solvation shell were calculated to be 2.8 and 2.74 ps, respectively. These values indicated a labile first solvation shell of Ca2+ in 18.4% aqueous ammonia. Meanwhile, angular distribution function analysis revealed the polyhedral structure of the first solvation shell. The average coordination numbers of 5.1 and 2.7 were obtained for water and ammonia, respectively, during the simulation. The presented simulation data provide detailed information about the properties of solvated Ca2+ in aqueous ammonia which will be beneficial to the investigation of the role of the ion in biological processes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yoshitake H (2005) New J Chem 29:1107

    CAS  Google Scholar 

  2. Frick RJ, Pribil AB, Hofer TS, Randolf BR, Bhattacharjee A, Rode BM (2009) Inorg Chem 48:3993

    CAS  PubMed  Google Scholar 

  3. Frick RJ, Pribil AB, Hofer TS, Randolf BR, Bhattacharjee A, Rode BM (2009) J Phys Chem A 113:12496

    CAS  PubMed  Google Scholar 

  4. Martonosi AN, Jona I, Molnar E, Seidler NW, Buchet R, Varga S (1990) FEBS Lett 268:365

    CAS  PubMed  Google Scholar 

  5. Agieienko VN, Kolesnik YV, Kalugin ON (2014) J Chem Phys 140:19450

    Google Scholar 

  6. Chazin WJ (1995) Nat Struct Biol 2:707

    CAS  PubMed  Google Scholar 

  7. Schwenk CF, Rode BM (2004) Pure Appl Chem 76:37

    CAS  Google Scholar 

  8. Lim LHV, Pribil AB, Ellmerer AE, Randolf BR, Rode BM (2009) J Comput Chem 31:1195

    Google Scholar 

  9. Prasetyo N, Utami W, Armunanto R, Hofer TS (2017) J Mol Liq 242:286

    CAS  Google Scholar 

  10. Siddique AA, Dixit MK, Tembe BL (2016) Chem Phys Lett 662:306

    CAS  Google Scholar 

  11. Hua W, Verreault D, Allen HC (2015) ChemPhysChem 16:3910

    CAS  PubMed  Google Scholar 

  12. Owczarek E, Rybicki M, Hawlicka E (2007) J Phys Chem B 111:14271

    CAS  PubMed  Google Scholar 

  13. Floris FM, Martínez JM, Tomasi J (2002) J Chem Phys 116:5460

    CAS  Google Scholar 

  14. Tongraar A, Sagarik K, Rode BM (2002) Phys Chem Chem Phys 4:628

    CAS  Google Scholar 

  15. Hofer TS, Rode BM, Pribil AB, Randolf BR (2010) Simulations of liquids and solutions based on quantum mechanical forces. In: van Eldik R, Harvey J (eds) Advances in inorganic chemistry, vol 62. Academic Press, Cambridge, p 143

    Google Scholar 

  16. Senn HM, Thiel W (2007) Curr Opin Chem Biol 11:182

    CAS  PubMed  Google Scholar 

  17. Bakowies D, Thiel W (1996) J Phys Chem 100:10580

    CAS  Google Scholar 

  18. Rode BM, Hofer TS, Randolf BR, Schwenk CF, Xenides D, Vchirawongkwin V (2006) Theor Chem Acc 115:77

    CAS  Google Scholar 

  19. Hofer TS, Pribil AB, Randolf BR, Rode BM (2010) Ab initio quantum mechanical charge field molecular dynamics—a nonparametrized first-principle approach to liquids and solutions. In: Sabin JR, Brändas E, Canuto S (eds), Advances in quantum chemistry combining quantum mechanics and molecular mechanics. some recent progresses in QM/MM Method, vol 59. Academic Press, Cambridge, p 213

  20. Hofer TS (2014) Pure Appl Chem 86:105

    CAS  Google Scholar 

  21. Weiss AKH, Hofer TS (2013) RSC Adv 3:1606

    CAS  Google Scholar 

  22. Hidayat Y, Armunanto R, Pranowo HD (2018) J Mol Model 24:122

    PubMed  Google Scholar 

  23. Prasetyo N, Armunanto R (2016) Chem Phys Lett 652:243

    CAS  Google Scholar 

  24. Hidayat Y, Armunanto R, Pranowo HD (2018) Chem Phys Lett 699:234

    CAS  Google Scholar 

  25. Uchtman VA, Oertel RP (1973) J Am Chem Soc 95:1802

    CAS  Google Scholar 

  26. Dang LX, Schenter GK, Glezakou VA, Fulton JL (2006) J Phys Chem B 110:23644

    CAS  PubMed  Google Scholar 

  27. Von Dreele RB, Glaunsinger WS, Bowman AL (1975) J Phys Chem 79:2992

    Google Scholar 

  28. Von Dreele RB, Glaunsinger WS, Chieux P, Damay P (1980) J Phys Chem 84:1172

    Google Scholar 

  29. Hofer TS, Tran HT, Schwenk CF, Rode BM (2004) J Comput Chem 25:211

    CAS  PubMed  Google Scholar 

  30. Dunning TH (1970) Chem Phys Lett 7:423

    CAS  Google Scholar 

  31. Bopp P, Jancsó G, Heinzinger K (1983) Chem Phys Lett 98:129

    CAS  Google Scholar 

  32. Stillinger FH, Rahman A (1978) J Chem Phys 68:666

    CAS  Google Scholar 

  33. Hannongbua S, Ishida T, Spohr E, Heinzinger K (1988) Z Naturforsch A 43:572

    CAS  Google Scholar 

  34. Schwenk CF, Rode BM (2003) Phys Chem Chem Phys 5:3418

    CAS  Google Scholar 

  35. Mulliken RS (1955) J Chem Phys 23:1833

    CAS  Google Scholar 

  36. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165

    CAS  Google Scholar 

  37. Von Arnim M, Ahlrichs R (1998) J Comput Chem 19:1746

    Google Scholar 

  38. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33

    CAS  Google Scholar 

  39. Schmidt J, VandeVondele J, Kuo IFW, Sebastiani D, Siepmann JI, Hutter J, Mundy CJ (2009) J Phys Chem B 113:11959

    CAS  PubMed  Google Scholar 

  40. Yoo S, Zeng XC, Xantheas SS (2009) J Chem Phys 130:22

    Google Scholar 

  41. Prasetyo N, Canaval LR, Wijaya K, Armunanto R (2015) Chem Phys Lett 619:158

    CAS  Google Scholar 

  42. Damay P, Leclercq F, Chieux P (1990) Phys Rev B 41:967

    Google Scholar 

  43. Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73

    CAS  Google Scholar 

  44. Adams DJ, Adams EM, Hills GJ (1979) Mol Phys 38:387

    CAS  Google Scholar 

  45. Berendsen HJ, Postma JV, van Gunsteren WF, DiNola ARHJ, Haak JR (1984) J Chem Phys 81:3684

    CAS  Google Scholar 

Download references

Acknowledgements

The presented computational results have been achieved (in part) using the Austria-Indonesia Centre (AIC) for Computational Chemistry, Universitas Gadjah Mada computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Prasetyo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasetyo, N., Zikri, A.T. & Hadisaputra, S. First solvation shell structure and dynamics of solvated Ca2+ in dilute aqueous ammonia by first principle approach: a QMCF MD simulation study. Monatsh Chem 151, 1493–1500 (2020). https://doi.org/10.1007/s00706-020-02678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02678-3

Keywords

Navigation