Skip to main content
Log in

White noise differential equations for vector-valued white noise functionals

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

In this paper, a framework of vector-valued white noise functionals has been constructed as a Gel’fand triple \({\mathcal {W}}_{\alpha }\otimes {\mathcal {E}} \subset \varGamma (H)\otimes K \subset ( {\mathcal {W}}_{\alpha }\otimes {\mathcal {E}})^*\). Base on the Gel’fand triple, a new notion of Wick product of vector-valued white noise functionals induced by a bilinear mapping \({\mathfrak {B}}:{\mathcal {E}}^*\times {\mathcal {E}}^*\rightarrow {\mathcal {E}}\) is introduced and called a \({\mathfrak {B}}\)-Wick product. We establish the unique existence of solution of an abstract functional differential equation base on the Gel’fand triple. For our purpose, we improve slightly the well-known analytic characterization theorem for S-transform, and the convergence theorem in terms of S-transform for a sequence of vector-valued generalized white noise functionals. As an application, we study the Wick type differential equations for vector-valued white noise functionals, and as examples we discuss the Wick type differential equations for certain operator algebra valued white noise functionals which naturally includes random matrices of white noise functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi, L., Ji, U.C., Saitô, K.: Analytic characterizations of infinite dimensional distributions. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 20, 1750007 (2017)

    Article  MathSciNet  Google Scholar 

  2. Asai, N., Kubo, I., Kuo, H.-H.: General characterization theorems and intrinsic topologies in white noise analysis. Hiroshima Math. J. 31, 299–330 (2001)

    Article  MathSciNet  Google Scholar 

  3. Cochran, W.G., Kuo, H.-H., Sengupta, A.: A new class of white noise generalized functions. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1, 9800005 (2014)

    MathSciNet  Google Scholar 

  4. Curtain, R.F., Falb, P.L.: Stochastic differential equations in Hilbert space. J. Differ. Equ. 10, 412–430 (1971)

    Article  MathSciNet  Google Scholar 

  5. Da Prato, G., Flandoli, F.: Pathwise uniqueness for a class of SDE in Hilbert spaces and applications. J. Funct. Anal. 259, 243–267 (2010)

    Article  MathSciNet  Google Scholar 

  6. Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer, Berlin (1999)

    Book  Google Scholar 

  7. Grothaus, M., Kondratiev, Y.G., Us, G.F.: Wick calculus for regular generalized stochastic functionals. Random Oper. Stoch. Equ. 7, 263–290 (1999)

    Article  MathSciNet  Google Scholar 

  8. Hida, T.: Analysis of Brownian Functionals. Carleton Math. Lect. Notes, no. 13. Carleton University, Ottawa (1975)

    Google Scholar 

  9. Hida, T.: Brownian Motion. Springer, Berlin (1980)

    Book  Google Scholar 

  10. Hida, T., Kuo, H.-H., Potthoff, J., Streit, L.: White Noise: An Infinite Dimensional Calculus. Kluwer Academic Publishers, Boston (1993)

    Book  Google Scholar 

  11. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations: A Modeling. White Noise Functional Approach. Probability and its Applications. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  12. Hudson, R.L., Parthasarathy, K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301–323 (1984)

    Article  MathSciNet  Google Scholar 

  13. Ji, U.C., Obata, N.: Initial value problem for white noise operators and quantum stochastic processes. In Heyer, H., et al. (eds.) Infinite Dimensional Harmonic Analysis, pp. 203–216. D.+M. Gräbner, Tübingen (2000)

    Google Scholar 

  14. Ji, U.C., Obata, N.: Quantum white noise calculus and applications. In: Rao, M.M. (ed.) Real and Stochastic Analysis, pp. 269–353. World Sci. Publ., Hackensack (2014)

    Chapter  Google Scholar 

  15. Ji, U.C.: Stochastic integral representation theorem for quantum semimartingales. J. Funct. Anal. 201, 1–29 (2003)

    Article  MathSciNet  Google Scholar 

  16. Ji, U.C., Lytvynov, E.: Wick calculus for noncommutative white noise corresponding to \(q\)-deformed commutation relations. Complex Anal. Oper. Theory 12, 1497–1517 (2018)

    Article  MathSciNet  Google Scholar 

  17. Ji, U.C., Obata, N.: Quantum white noise calculus. In: Obata, N., Matsui, T., Hora, A. (eds.) Non-Commutativity, Infinite-Dimensionality and Probability at the Crossroads, pp. 143–191. World Scientific, Singapore (2002)

    Google Scholar 

  18. Ji, U.C., Obata, N.: A unified characterization theorem in white noise theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6, 167–178 (2003)

    Article  MathSciNet  Google Scholar 

  19. Ji, U.C., Obata, N.: Annihilation-derivative, creation-derivative and representation of quantum martingales. Commun. Math. Phys. 286, 751–775 (2009)

    Article  MathSciNet  Google Scholar 

  20. Ji, U.C., Obata, N.: Implementation problem for the canonical commutation relation in terms of quantum white noise derivatives. J. Math. Phys. 51, 123507 (2010)

    Article  MathSciNet  Google Scholar 

  21. Ji, U.C., Obata, N.: An implementation problem for boson fields and quantum Girsanov transform. J. Math. Phys. 57, 083502 (2016)

    Article  MathSciNet  Google Scholar 

  22. Ji, U.C., Kim, Y.Y., Park, Y.J.: Convolutions of generalized white noise functionals. Probab. Math. Stat. 33, 435–450 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Kondratiev, Y.G., Streit, L.: Spaces of white noise distributions: constructions, descriptions, applications I. Rep. Math. Phys. 33, 341–366 (1993)

    Article  MathSciNet  Google Scholar 

  24. Kondratiev, Y.G., Leukert, P., Streit, L.: Wick calculus in Gaussian analysis. Acta Appl. Math. 44, 269–294 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Kubo, I., Takenaka, S.: Calculus on Gaussian white noise I. Proc. Jpn. Acad. 56A, 376–380 (1980)

    Article  MathSciNet  Google Scholar 

  26. Kuo, H.-H.: White Noise Distribution Theory. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  27. Obata, N.: White Noise Calculus and Fock Space. Lecture Notes in Mathematics, vol. 1577. Springer, Berlin (1994)

    Google Scholar 

  28. Obata, N.: Operator calculus on vector-valued white noise functionals. J. Funct. Anal. 121, 185–232 (1994)

    Article  MathSciNet  Google Scholar 

  29. Obata, N.: Wick product of white noise operators and quantum stochastic differential equations. J. Math. Soc. Jpn. 51, 613–641 (1999)

    Article  MathSciNet  Google Scholar 

  30. Potthoff, J., Streit, L.: A characterization of Hida distributions. J. Funct. Anal. 101, 212–229 (1991)

    Article  MathSciNet  Google Scholar 

  31. Potthoff, J., Timpel, M.: On a dual pair of spaces of smooth and generalized random variables. Potential Anal. 4, 637–654 (1995)

    Article  MathSciNet  Google Scholar 

  32. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)

    MATH  Google Scholar 

  33. Taniguchi, T., Liu, K., Truman, A.: Existence, uniqueness, and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces. J. Differ. Equ. 181, 72–91 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This is supported by Basic Science Research Program through the NRF funded by the MEST (NRF-2016R1D1A1B01008782).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Un Cig Ji.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Jan van Neerven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, U.C., Ma, P.C. White noise differential equations for vector-valued white noise functionals. Banach J. Math. Anal. 15, 3 (2021). https://doi.org/10.1007/s43037-020-00088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-020-00088-5

Keywords

Mathematics Subject Classification

Navigation