Skip to main content
Log in

Influence of the Preparation Method on the Physicochemical and Catalytic Properties of Platinum Catalysts Supported on Bayerite Alumina for the Partial Oxidation Reactions of Hydrocarbons

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Platinum catalysts supported onto bayerite alumina were synthesized and studied. Alumina of the θ-Al2O3 type, which was prepared from metallic aluminum by an aluminate method, was used as a support, and platinum(IV) nitrate and hydrogen hexachloroplatinate(IV) precursors containing Pt4+ ions were used for supporting an active component. The catalysts were studied by physicochemical methods such as X-ray phase analysis, X-ray photoelectron spectroscopy, transmission electron microscopy, and ultraviolet-visible diffuse reflection spectroscopy. It was found that platinum occurred in a finely dispersed state in both of the catalysts, and it was uniformly distributed over the support surface. The particle sizes were 2.8 and 0.9 nm in the samples synthesized from platinum(IV) nitrate and hydrogen hexachloroplatinate(IV), respectively. The most uniform surface distribution, high dispersity, and a narrow particle-size distribution were obtained with the use of hydrogen hexachloroplatinate(IV). The catalysts were tested in the partial oxidation of natural gas. The catalyst synthesized using platinum(IV) nitrate afforded an almost thermodynamically equilibrium distribution of the reaction products of partial oxidation at a temperature of 700–800°С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. York, A.P.E., Xiao, T., and Green, M.L.H., Top. Catal., 2003, vol. 22, nos. 3–4, p. 345.

    Article  CAS  Google Scholar 

  2. Faravelli, T., Goldaniga, A., Ranzi, E., Dietz, A., Davis, M., and Schmidt, L.D., Stud. Surf. Sci. Catal., 1998, vol. 119, p. 575.

    Article  CAS  Google Scholar 

  3. Bukhtiyarov, V.I., Moroz, B.L., Bekk, I.E., and Prosvirin, I.P., Katal. Prom-sti, 2008, Special Issue, p. 44.

    Google Scholar 

  4. O’Connell, M., Kolb, G., Zapf, R., Men, Y., and Hessel, V., Catal. Today, 2009, vol. 144, p. 306.

    Article  Google Scholar 

  5. Belyi, A.S., Kinet. Catal., 2008, vol. 49, no. 4, p. 562.

    Article  CAS  Google Scholar 

  6. Moroz, E.M., Russ. Chem. Rev., 1992, vol. 61, no. 2, p. 188.

    Article  Google Scholar 

  7. Ushakov, V.A., Moroz, E.M., Zhdan, P.A., Boronin, A.I., Bursian, N.R., Kogan, S.B., and Levitskii, E.A., Kinet. Katal., 1978, vol. 19, no. 3, p. 744.

    CAS  Google Scholar 

  8. Hickman, D.A. and Schmidt, L.D., J. Catal., 1992, vol. 138, p. 267.

    Article  CAS  Google Scholar 

  9. Carlsson, P.-A., Fridell, E., and Skoglundha, M., Catal. Lett., 2007, vol. 115, nos. 1–2, p. 1.

    Article  CAS  Google Scholar 

  10. O’Brien, C.P., Jenness, G.R., Dong, H., Vlachos, D.G., and Lee, I.C., J. Catal., 2016, vol. 337, p. 122.

    Article  Google Scholar 

  11. Yazawa, Y., Takagi, N., Yoshida, H., Komai, S.-I., Satsuma, A., Tanaka, T., Yoshida, S., and Hattori, T., Appl. Catal., A, 2002, vol. 233, p. 103.

  12. Yazawa, Y., Yoshida, H., and Hattori, T., Appl. Catal., A, 2002, vol. 237, p. 139.

  13. Liu, Z.G., Berg, D.R., Vasys, V.N., Dettmann, M.E., Zielinska, B., and Schauer, J.J., Atmos. Environ., 2010, vol. 44, p. 1108–1115.

    Article  Google Scholar 

  14. Stiles, A.B., Catalyst Supports and Supported Catalysts: Theoretical and Applied Concepts, Oxford: Butterworth-Heinemann, 1987.

    Google Scholar 

  15. Lippens, B.C. and Steggerda, J.J., Active Alumina, Linsen, B., Ed., London: Academic, 1970.

    Google Scholar 

  16. Tsybulya, S.V. and Kryukova, G.N., Phys. Rev. B, 2008, vol. 77, p. 024112-1–024112-13.

    Article  Google Scholar 

  17. Busca, G., Catal. Today, 2014, vol. 226, p. 2.

    Article  CAS  Google Scholar 

  18. Carrera, A., Pelucchi, M., Stagni, A., Beretta, A., and Groppi, G., Int. J. Hydrogen Energy, 2017, vol. 42, no. 39, p. 24675.

    Article  CAS  Google Scholar 

  19. Bodke, A.S., Bharadwaj, S.S., and Schmidt, L.D., J. Catal., 1998, vol. 179, p. 138.

    Article  CAS  Google Scholar 

  20. Park, J.E., Kim, B.B., and Park, E.D., Korean J. Chem. Eng., 2015, vol. 32, no. 11, p. 2212.

    Article  CAS  Google Scholar 

  21. Knozinger, H. and Ratnasamy, P., Rev. Sci. Eng., 1978, vol. 17, p. 31.

    Article  Google Scholar 

  22. Tregubenko, V.Yu., Cand. Sci. (Chem.) Dissertation, Omsk: Institute of Problems of Refining of Hydrocarbons SB RAS, 2011.

  23. Della Gatta, G., Fubini, B., Ghiotti, G., and Morterra, C., J. Catal., 1976, vol. 43, p. 90.

    Article  CAS  Google Scholar 

  24. Bolis, V., Cerrato, G., Magnacca, G., Morterra, C., Bolis, V., Cerrato, G., Magnacca, G., and Morterra, C., Thermochim. Acta, 1998, vol. 312, p. 63.

    Article  CAS  Google Scholar 

  25. Saalfeld, H., Neues Jarb. Mineral. Ahandl., 1960, vol. 95, p. 1.

    CAS  Google Scholar 

  26. Zhou, R.-S. and Snyder, R.L., Acta Crystallogr., 1991, vol. 47, p. 617.

    Article  Google Scholar 

  27. Patterson, A.L., Phys. Rev. 1939, vol. 56, p. 978.

    Article  CAS  Google Scholar 

  28. Andersen, A.G., Hayakawa, T., Tsunoda, T., Orita, H., Shimizu, M., and Takehira, K., Catal. Lett., 1993, vol. 18, nos. 1–2, p. 37.

    Article  CAS  Google Scholar 

  29. Rogozhnikov, V.N., Snytnikov, P.V., Salanov, A.N., Kulikov, A.V., Ruban, N.V., Potemkin, D.I., Sobyanin, V.A., and Kharton, V.V., Mater. Lett., 2019, vol. 236, p. 316.

    Article  CAS  Google Scholar 

  30. Frade, J.R., Kharton, V.V., Yaremchenko, A.A., Tsipis, E.V., Shaula, A.L., Naumovich, E.N., Kovalevsky, A.V., and Marques, F.M.B., Bol. Soc. Esp. Ceram., 2004, vol. 43, issue 3, p. 640.

    Article  CAS  Google Scholar 

  31. Bokii, G.B., Kristallokhimiya (Crystallochemistry), Moscow: Nauka, 1971.

    Google Scholar 

  32. Ershov, B.G., Russ. Chem. Bull., 2001, vol. 50, no. 4, p. 626.

    Article  CAS  Google Scholar 

  33. Gololobov, A.M., Bekk, I.E., Bragina, G.O., Zaikovskii, V.I., Ayupov, A.B., Telegina, N.S., Bukhtiyarov, V.I., and Stakheev, A.Yu., Kinet. Katal., 2009, vol. 50, no. 6, p. 830.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-03-00595.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Shefer.

Additional information

Translated by V. Makhlyarchuk

Abbreviations: XPS, X-ray photoelectron spectroscopy; TEM, transmission electron microscopy; UV-Vis DRS, ultraviolet-visible diffuse reflectance spectroscopy; CSR, coherent scattering region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shefer, K.I., Kovtunova, L.M., Rogozhnikov, V.N. et al. Influence of the Preparation Method on the Physicochemical and Catalytic Properties of Platinum Catalysts Supported on Bayerite Alumina for the Partial Oxidation Reactions of Hydrocarbons. Kinet Catal 61, 801–808 (2020). https://doi.org/10.1134/S0023158420050092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420050092

Keywords:

Navigation