Skip to main content
Log in

Heterogeneous Catalysts SILP with Phosphotungstic Acid for Oxidative Desulfurization: Effect of Ionic Liquid

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

SILP (supporting ionic liquid phase) catalysts for peroxide thiophene oxidation were obtained on silica gel, they included imidazole cations with sulfonic acid group and phosphotungstate anions. The composition of the active phase and the surface structure of the catalysts are characterized by a set of modern physicochemical methods, including mass spectrometry using the SALDI technique. It was found that the organic cation structure affects the stability of heteropolyanions, decomposition processes in the SILP and the catalytic properties of the samples. SILP catalysts are effective in desulfurization of the diesel fraction and provide fuel with an S content of less than 10 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. da Silva, M.J. and de Oliveira, C.M., Curr. Catal., 2018, vol. 7, p. 26. https://doi.org/10.2174/2211544707666171219161414

    Article  CAS  Google Scholar 

  2. Ghubayra, R., Nuttall, C., Hodgkiss, S., Craven, M., Kozhevnikova, E.F., and Kozhevnikov, I.V., Appl. Catal., B, 2019, vol. 253, p. 309. https://doi.org/10.1016/j.apcatb.2019.04.063

    Article  CAS  Google Scholar 

  3. Julião, D., Valença, R., Ribeiro, J.C., de Castro, B., and Balula, S.S., Appl. Catal., A, 2017, vol. 537, p. 93. https://doi.org/10.1016/j.apcata.2017.02.021

  4. Bryzhin, A.A., Gantman, M.G., Buryak, A.K., and Tarkhanova, I.G., Appl. Catal., B, 2019, vol. 257, p. 117938. https://doi.org/10.1016/j.apcatb.2019.117938

    Article  CAS  Google Scholar 

  5. Bhadra, B.N. and Jhung, S.H., Appl. Catal., B, 2019, vol. 259, p. 118021. https://doi.org/10.1016/j.apcatb.2019.118021

    Article  CAS  Google Scholar 

  6. Javadli, R. and de Klerk, A., Appl. Petrochem. Res., 2012, vol. 1, p. 3. https://doi.org/10.1007/s13203-012-0006-6

    Article  CAS  Google Scholar 

  7. Rezakazemi, M. and Zhang, Z., Desulfurization Materials, in Compr. Energy Syst., Elsevier, 2018, p. 944. https://doi.org/10.1016/B978-0-12-809597-3.00263-7

    Book  Google Scholar 

  8. Dehghan, R. and Anbia, M., Fuel Process. Technol., 2017, vol. 167, p. 99. https://doi.org/10.1016/j.fuproc.2017.06.015

    Article  CAS  Google Scholar 

  9. Crandall, B.S., Zhang, J., Stavila, V., Allendorf, M.D., and Li, Z., Ind. Eng. Chem. Res., 2019, vol. 58, p. 19322. https://doi.org/10.1021/acs.iecr.9b03183

    Article  CAS  Google Scholar 

  10. Chandran, D., Khalid, M., Walvekar, R., Mubarak, N.M., Dharaskar, S., Wong, W.Y., and Gupta, T.C.S.M., J. Mol. Liq., 2019, vol. 275, p. 312. https://doi.org/10.1016/j.molliq.2018.11.051

    Article  CAS  Google Scholar 

  11. Gao, J., Zhu, S., Dai, Y., Xiong, C., Li, C., Yang, W., and Jiang, X., Fuel, 2018, vol. 233, p. 704. https://doi.org/10.1016/j.Fuel,2018.06.101

    Article  CAS  Google Scholar 

  12. Abdul-Kadhim, W., Deraman, M.A., Abdullah, S.B., Tajuddin, S.N., Yusoff, M.M., Taufiq-Yap, Y.H., and Rahim, M.H.A., J. Environ. Chem. Eng., 2017, vol. 5, p. 1645. https://doi.org/10.1016/j.jece.2017.03.001

    Article  CAS  Google Scholar 

  13. Zhang, Y., Li, G., Kong, L., and Lu, H., Fuel, 2018, vol. 219, p. 103. https://doi.org/10.1016/j.Fuel,2018.01.050

    Article  CAS  Google Scholar 

  14. Wei, S., He, H., Cheng, Y., Yang, C., Zeng, G., Kang, L., Qian, H., and Zhu, C., Fuel, 2017, vol. 200, p. 11. https://doi.org/10.1016/j.Fuel,2017.03.052

    Article  CAS  Google Scholar 

  15. Bazyari, A., Khodadadi, A.A., Haghighat Mamaghani, A., Beheshtian, J., Thompson, L.T., and Mortazavi, Y., Appl. Catal., B, 2016, vol. 180, p. 65. https://doi.org/10.1016/j.apcatb.2015.06.011

    Article  CAS  Google Scholar 

  16. Craven, M., Xiao, D., Kunstmann-Olsen, C., Kozhevnikova, E.F., Blanc, F., Steiner, A., and Kozhevnikov, I.V., Appl. Catal., B, 2018, vol. 231, p. 82. https://doi.org/10.1016/j.apcatb.2018.03.005

    Article  CAS  Google Scholar 

  17. Kozhevnikov, I.V., Chem. Rev., 1998, vol. 98, p. 171. https://doi.org/10.1021/cr960400y

    Article  CAS  PubMed  Google Scholar 

  18. García-Gutiérrez, J.L., Fuentes, G.A., Hernández-Terán, M.E., García, P., Murrieta-Guevara, F., and Jiménez-Cruz, F., Appl. Catal., A, 2008, vol. 334, p. 366. https://doi.org/10.1016/j.apcata.2007.10.024

  19. Marcì, G., García-López, E., Bellardita, M., Parisi, F., Colbeau-Justin, C., Sorgues, S., Liotta, L.F., and Palmisano, L., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 13329. https://doi.org/10.1039/c3cp51142a

    Article  CAS  PubMed  Google Scholar 

  20. Gao, S., Li, J., Chen, X., Abdeltawab, A.A., Yakout, S.M., and Yu, G., Fuel, 2018, vol. 224, p. 545. https://doi.org/10.1016/j.Fuel,2018.03.108

    Article  CAS  Google Scholar 

  21. Wang, J., Zhang, L., Sun, Y., Jiang, B., Chen, Y., Gao, X., and Yang, H., Fuel Process. Technol., 2018, vol. 177, p. 81. https://doi.org/10.1016/j.fuproc.2018.04.013

    Article  CAS  Google Scholar 

  22. Raj, J.J., Magaret, S., Pranesh, M., Lethesh, K.C., Devi, W.C., and Mutalib, M.I.A., J. Cleaner Prod., 2019, vol. 213, p. 989. https://doi.org/10.1016/j.jclepro.2018.12.207

    Article  CAS  Google Scholar 

  23. Yasuda, T., Uchiage, E., Fujitani, T., Tominaga, K., and Nishida, M., Appl. Catal., B, 2018, vol. 232, p. 299. https://doi.org/10.1016/j.apcatb.2018.03.057

    Article  CAS  Google Scholar 

  24. Zhao, J., Yu, Y., Xu, X., Di, S., Wang, B., Xu, H., Ni, J., Guo, L., Pan, Z., and Li, X., Appl. Catal., B, 2017, vol. 206, p. 175. https://doi.org/10.1016/j.apcatb.2017.01.026

    Article  CAS  Google Scholar 

  25. Plechkova, N.V. and Seddon, K.R., Ionic Liquids Completely UnCOILed, Hoboken: Wiley, 2015, p. 548. https://doi.org/10.1002/9781118840061

    Book  Google Scholar 

  26. Steinrück, H.-P. and Wasserscheid, P., Catal. Lett., 2015, vol. 145, p. 380. https://doi.org/10.1007/s10562-014-1435-x

    Article  CAS  Google Scholar 

  27. More, S., Jadhav, S., Salunkhe, R., and Kumbhar, A., J. Mol. Catal., 2017, vol. 442, p. 126. https://doi.org/10.1016/j.mcat.2017.08.023

    Article  CAS  Google Scholar 

  28. Fehér, C., Tomasek, S., Hancsók, J., and Skoda-Földes, R., Appl. Catal., B, 2018, vol. 239, p. 52. https://doi.org/10.1016/j.apcatb.2018.08.013

    Article  CAS  Google Scholar 

  29. Rufete-Beneite, M., Haumann, M., and Román-Martínez, M.C., J. Mol. Catal., 2018, vol. 453, p. 31. https://doi.org/10.1016/j.mcat.2018.04.031

    Article  CAS  Google Scholar 

  30. Ismagilov, Z., Yashnik, S., Kerzhentsev, M., Parmon, V., Bourane, A., Al-Shahrani, F.M., Hajji, A.A., and Koseoglu, O.R., Catal. Rev., 2011, vol. 53, p. 199. https://doi.org/10.1080/01614940.2011.596426

    Article  CAS  Google Scholar 

  31. Luo, S.-C., Sun, S., Deorukhkar, A.R., Lu, J.T., Bhattacharyya, A., and Lin, I.J.B., J. Mater. Chem., 2011, vol. 21, p. 1866. https://doi.org/10.1039/C0JM02875D

    Article  CAS  Google Scholar 

  32. Li, M., Zhang, M., Wei, A., Zhu, W., Xun, S., Li, Y., Li, H., and Li, H., J. Mol. Catal. A: Chem., 2015, vol. 406, p. 23. https://doi.org/10.1016/j.molcata.2015.05.007

    Article  CAS  Google Scholar 

  33. Treiber, A., J. Org. Chem., 2002, vol. 67, p. 7261. https://doi.org/10.1021/jo0202177

    Article  CAS  PubMed  Google Scholar 

  34. Kong, L., Li, G., and Wang, X., Catal. Today, 2004, vols. 93–95, p. 341. https://doi.org/10.1016/j.cattod.2004.06.016

    Article  CAS  Google Scholar 

  35. Chen, L. and Li, F., Energy Fuels, 2010, vol. 24, p. 3443. https://doi.org/10.1021/ef1002205

    Article  CAS  Google Scholar 

  36. Kreja, L., Monatshefte Fur Chemie / Chem.Mon., 1987, vol. 118, p. 717. https://doi.org/10.1007/BF00809221

    Article  CAS  Google Scholar 

  37. Kreja, L. and Plewka, A., Angew. Makromol. Chem., 1982, vol. 102, p. 45. https://doi.org/10.1002/apmc.1982.051020106

    Article  CAS  Google Scholar 

  38. Pignatello, J.J., Environ. Sci. Technol., 1992, vol. 26, p. 944. https://doi.org/10.1021/es00029a012

    Article  CAS  Google Scholar 

  39. Zhang, H., Fei, C., Zhang, D., and Tang, F., J. Hazard. Mater., 2007, vol. 145, p. 227. https://doi.org/10.1016/j.jhazmat.2006.11.016

    Article  CAS  PubMed  Google Scholar 

  40. Bryzhin, A.A., Tarkhanova, I.G, Maslakov, K.I., Nikolaev, S.A., Rostovshchikova, T.N., Gurevich, S.A., Kozhevin, V.M., Yavsin, D.A., and Gantman, M.G., Russ. J. Phys. Chem. A, 2019, vol. 93, no. 10, p. 1976. https://doi.org/10.1134/S0036024419100029

    Article  CAS  Google Scholar 

  41. Tarkhanova, I.G., Bryzhin, A.A., Gantman, M.G., Yarovaya, T.P., Lukiyanchuk, I.V., Nedozorov, P.M., and Rudnev, V.S., Surf. Coat. Technol., 2019, vol. 362, p. 132. https://doi.org/10.1016/j.surfcoat.2019.01.101

    Article  CAS  Google Scholar 

  42. Tarkhanova, I.G., Anisimov, A.V., Bryzhin, A.A., Ali-Zade, A.G., Akopyan, A.V., Zelikman, V.M., and Buryak, A.K., Pet. Chem., 2017, Vol. 51, no. 10, p. 859. https://doi.org/10.1134/S0965544117100164

    Article  Google Scholar 

  43. Elwell, W.T. and Wood, D.F., Qualitative Detection / Anal. Chem. Molybdenum Tungsten, Elsevier, 1971, p. 15. https://doi.org/10.1016/B978-0-08-016673-5.50008-9

    Book  Google Scholar 

  44. Zhu, W., Huang, W., Li, H., Zhang, M., Jiang, W., Chen, G., and Han, C., Fuel Process. Technol., 2011, vol. 92, p. 1842. https://doi.org/10.1016/j.fuproc.2011.04.030

    Article  CAS  Google Scholar 

  45. Ranga Rao, G., Rajkumar, T., and Varghese, B., Solid State Sci., 2009, vol. 11, p. 36. https://doi.org/10.1016/j.solidstatesciences.2008.05.017

    Article  CAS  Google Scholar 

  46. Sopa, M., Wącław-Held, A., Grossy, M., Pijanka, J., and Nowińska, K., Appl. Catal., A, 2005, vol. 285, p. 119. https://doi.org/10.1016/j.apcata.2005.02.013

  47. Izumi, Y., J. Catal., 1983, vol. 84, p. 402. https://doi.org/10.1016/0021-9517(83)90011-8

    Article  CAS  Google Scholar 

  48. Wang, S.-S. and Yang, G.-Y., Chem. Rev., 2015, vol.115, p. 4893. https://doi.org/10.1021/cr500390v

    Article  CAS  PubMed  Google Scholar 

  49. Zheng, H.-Q., Zeng, Y.-N., Chen, J., Lin, R.-G., Zhuang, W.-E., Cao, R., and Lin, Z.-J., Inorg. Chem., 2019, vol. 58, p. 6983. https://doi.org/10.1021/acs.inorgchem.9b00604

    Article  CAS  PubMed  Google Scholar 

  50. Lopes, A.R., de P. Scheer, A., Silva, G.V., and Yamamoto, C.I., Matéria, 2016, vol. 21, p. 407. https://doi.org/10.1590/S1517-707620160002.0038

    Article  CAS  Google Scholar 

  51. Chen, L., Guo, S., and Zhao, D., Chin. J. Chem. Eng., 2007, vol. 15, p. 520. https://doi.org/10.1016/S1004-9541(07)60118-9

    Article  CAS  Google Scholar 

  52. Al-Shahrani, F., Xiao, T., Llewellyn, S.A., Barri, S., Jiang, Z., Shi, H., Martinie, G., and Green, M.L.H., Appl. Catal., B, 2007, vol. 73, p. 311. https://doi.org/10.1016/j.apcatb.2006.12.016

    Article  CAS  Google Scholar 

  53. Zhang, B., Jiang, Z., Li, J., Zhang, Y., Lin, F., Liu, Y., and Li, C., J. Catal., 2012, vol. 287, p. 5. https://doi.org/10.1016/j.jcat.2011.11.003

    Article  CAS  Google Scholar 

  54. Yahya, R., Craven, M., Kozhevnikova, E.F., Steiner, A., Samunual, P., Kozhevnikov, I.V., and Bergbreiter, D.E., Catal. Sci. Technol., 2015, vol. 5, p. 818. https://doi.org/10.1039/C4CY01394H

    Article  CAS  Google Scholar 

  55. Oh, H.S., Kim, J.-J., and Kim, Y.-H., J. Chem. Eng., 2016, vol. 33, p. 885. https://doi.org/10.1007/s11814-015-0204-x

    Article  CAS  Google Scholar 

  56. Mirante, F., Alves, A.C., Julião, D., Almeida, P.L., Gago, S., Valença, R., Ribeiro, J.C., de Castro, B., Granadeiro, C.M., and Balula, S.S., Fuel, 2020, vol. 259, p. 116213. https://doi.org/10.1016/j.Fuel,2019.116213

    Article  CAS  Google Scholar 

  57. Banisharif, F., Dehghani, M.R., Capel-Sanchez, M.C., and Campos-Martin, J.M., Catal. Today, 2019, vol. 333, p. 219. https://doi.org/10.1016/j.cattod.2018.07.009

    Article  CAS  Google Scholar 

  58. Andevary, H.H., Akbari, A., and Omidkhah, M., Fuel Process. Technol., 2019, vol. 185, p. 8. https://doi.org/10.1016/j.fuproc.2018.11.014

    Article  CAS  Google Scholar 

  59. Julião, D., Mirante, F., Ribeiro, S.O., Gomes, A.C., Valença, R., Ribeiro, J.C., Pillinger, M., de Castro, B., Gonçalves, I.S., and Balula, S.S., Fuel, 2019, vol. 241, p. 616. https://doi.org/10.1016/j.Fuel,2018.11.095

    Article  Google Scholar 

  60. Ribeiro, S.O., Granadeiro, C.M., Almeida, P.L., Pires, J., Capel-Sanchez, M.C., Campos-Martin, J.M., Gago, S., de Castro, B., and Balula, S.S., Catal. Today, 2019, vol. 333, p. 226. https://doi.org/10.1016/j.cattod.2018.10.046

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 19-33-90024. Equipment purchased under the University Development Program of the Moscow State University was used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Tarkhanova.

Additional information

Translated by O. Kadkin

Abbreviations: HPA, heteropolyacid; IL, ionic liquid; ODS, oxidative desulfurization; ZI, Zwitterionic compound; PTA, phosphotungstic heteropolyacid; SALDI, surface-assisted laser desorption/ionization; NMR, nuclear magnetic resonance; TPD NH3, temperature programmed desorption of ammonia; SEM, scanning electron microscopy; SEI, secondary electron imaging; GLC, gas–liquid chromatography; DMF, dimethylformamide; BJH, Barrett–Joyner–Halenda method; BET, Brunauer–Emmett–Teller method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryzhin, A.A., Buryak, A.K., Gantman, M.G. et al. Heterogeneous Catalysts SILP with Phosphotungstic Acid for Oxidative Desulfurization: Effect of Ionic Liquid. Kinet Catal 61, 775–785 (2020). https://doi.org/10.1134/S0023158420050018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420050018

Keywords:

Navigation