Skip to main content
Log in

Surface Modification of Cu-SSZ-13 with CeO2 to Improve the Catalytic Performance for the Selective Catalytic Reduction of NO with NH3

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A series of Cu-SSZ-13@CeO2 catalysts with surface modification with CeO2 was prepared by the modified self-resemble method based on the one-pot synthesized Cu-SSZ-13 catalyst and applied for the selective catalytic reduction of NO by NH3. The low-temperature catalytic activity and the tolerance to SO2 + H2O of Cu-SSZ-13@CeO2 were found to enhance markedly compared with Cu-SSZ-13. In parallel, the XRD, N2-BET, H2-TPR, SEM, XPS, and in situ DRIFTS were performed to characterize the catalysts. XRD and SEM results proved that the surface of Cu-SSZ-13 was covered by nanoparticles of CeO2. XPS results further confirmed that Ce species were in the outer of the catalysts. N2-BET indicated that the physical structure parameters of the Cu-SSZ-13@CeO2 were changed obviously due to the coverage of CeO2. H2-TPR suggested that the redox properties of the Cu-SSZ-13@CeO2 catalysts were improved compared to the unmodified Cu-SSZ-13. In situ DRIFTS results demonstrated that the intensities of the bands attributed to NH3 and NOx species on the surface of Cu-SSZ-13@CeO2-2 enhanced due to the CeO2 modification, which played an important role for the NH3-SCR performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bosch, H. and Janssen, F., Catal. Today, 1988, vol. 2, p. 369.

    Article  CAS  Google Scholar 

  2. Qi, G. and Yang, R.T., Appl. Catal., B, 2003, vol. 44, p. 217.

    Article  CAS  Google Scholar 

  3. Kwak, J., Tonkyn, R., Kim, D., Szanyi, J., and Peden, C., J. Catal., 2010, vol. 275, p. 187.

    Article  CAS  Google Scholar 

  4. Ren, L., Zhu, L., Yang, C., Chen, Y., Sun, Q., Zhang, H., Li, C., Nawaz, F., Meng, X., and Xiao, F., Chem. Commun., 2011, vol. 47, p. 9789.

    Article  CAS  Google Scholar 

  5. Xie, L., Liu, F., Ren, L., Shi, X., Xiao, F., and He, H., Environ. Sci. Technol., 2013, vol. 48, p. 566.

    Article  Google Scholar 

  6. Martínez-Franco, R., Moliner, M., Thogersen, J., and Corma, A., ChemCatChem, 2013, vol. 5, p. 3316.

    Article  Google Scholar 

  7. Wijayanti, K., Leistner, K., Chand, S., Kumar, A., Kamasamudram, K., Currier, N., Yezerets, A., and Olsson, L., Catal. Sci. Technol., 2016, vol. 6, p. 2565.

    Article  CAS  Google Scholar 

  8. Wijayanti, K., Xie, K., Kumar, A., Kamasamudram, K., and Olsson, L., Appl. Catal., B, 2017, vol. 219, p. 142.

    Article  CAS  Google Scholar 

  9. Li, X., Li, Y., Deng, S., and Rong, T., Catal. Commun., 2013, vol. 40, p. 47.

    Article  Google Scholar 

  10. Li, X., and Li, Y., Catal. Lett., 2014, vol. 144, p. 165.

    Article  CAS  Google Scholar 

  11. Usui, T., Liu, Z., Ibe, S., Zhu, J., Anand, C., Igarashi, H., Onaya, N., Sasaki, Y., Shiramata, Y., Tetsuro, K., and Wakihara, T., ACS Catal., 2018, vol. 8, p. 9165.

    Article  CAS  Google Scholar 

  12. Liu, X., Li, Y., and Zhang, R., RSC Adv., 2015, vol. 5, p. 85453.

    Article  CAS  Google Scholar 

  13. Liu, J.X., Liu, J., Zhao, Z., Wei, Y., and Song, W., AIChE J., 2017, vol. 63, p. 4430.

    Article  CAS  Google Scholar 

  14. Shan, W., Liu, F., He, H., Shi, X., and Zhang, C., Appl. Catal., B, 2012, vol. 115, p. 100.

    Article  Google Scholar 

  15. You, X., Sheng, Z., Yu, D., Yang, L., Xiao, X., and Wang, S., Appl. Sur. Sci., 2017, vol. 423, p. 845.

    Article  CAS  Google Scholar 

  16. Zhang, R., Li, Y., and Zhen, T., RSC Adv., 2014, vol. 4, p. 52130.

    Article  CAS  Google Scholar 

  17. Li, X. and Li, Y., J. Mol. Catal. A: Chem., 2014, vol. 386, p. 69.

    Article  CAS  Google Scholar 

  18. Chadwick, D. and Hashemi, T., Corros. Sci., 1978, vol. 18, p. 39.

    Article  CAS  Google Scholar 

  19. Gong, J., Yue, H., Zhao, Y., Zhao, S., Zhao, L., Lv, J., Wang, S., and Ma, X., J. Am. Chem. Soc., 2012, vol. 134, p. 13922.

    Article  CAS  Google Scholar 

  20. Zhang, T., Li, J.M., Liu, J., Wang, D., Zhao, Z., Cheng, K., and Li, J., AIChE J., 2015, vol. 61, p. 3825.

    Article  CAS  Google Scholar 

  21. Wang, J., Peng, Z., Qiao, H., Yu, H., Hu, Y., Chang, L., and Bao, W., Ind. Eng. Chem. Res., 2016, vol. 55, p. 1174.

    Article  CAS  Google Scholar 

  22. Shen, K., Zhang, Y., Wang, X., Xu, H., Sun, K., and Zhou, C., J. Energy Chem., 2013, vol. 22, p. 617.

    Article  CAS  Google Scholar 

  23. Qiu, L., Pang, D., Zhang, C., Meng, J., Zhu, R., and Ouyang, F., Appl. Surf. Sci., 2015, vol. 357, p. 189.

    Article  CAS  Google Scholar 

  24. Thirupathi, B. and Smirniotis, P.G., Appl. Catal. B. Environ., 2011, vol. 110, p. 195.

    Article  CAS  Google Scholar 

  25. Liu, Z., Liu, Y., Li, Y., Su, H., and Ma, L., Chem. Eng. J., 2016, vol. 283, p. 1044.

    Article  CAS  Google Scholar 

  26. Cao, F., Su, S., Xiang, J., Wang, P., Hu, S., Sun, L., and Zhang, A., Fuel, 2015, vol. 139, p. 232.

    Article  CAS  Google Scholar 

  27. Busca, G., Larrubia, M.A., Arrighi, L., and Ramis, G., Catal. Today, 2005, vol. 107, p. 139.

    Article  Google Scholar 

  28. Amblard, M., Burch, R., and Southward, B.W.L., Catal. Today, 2000, vol. 59, p. 365.

    Article  CAS  Google Scholar 

  29. Yang, N., Guo, R., Pan, W., Chen, Q., Wang, Q., Lu, C., and Wang, S., Appl. Surf. Sci., 2016, vol. 357, p. 513.

    Article  Google Scholar 

  30. He, H., Zhang, C., and Yu, Y., Catal. Today, 2004, vol. 90, p. 191.

    Article  CAS  Google Scholar 

  31. Zhang, L., Cui, S., Guo, H., Ma, X., and Luo, X., J. Mol. Catal. A. Chem., 2014, vol. 390, p. 14.

    Article  CAS  Google Scholar 

  32. Kantcheva, M., J. Catal., 2001, vol. 204, p. 479.

    Article  CAS  Google Scholar 

  33. Li, L., Zhang, F., Guan, N., Schreier, E., and Richter, M., Catal. Commun., 2008, vol. 9, p. 1827.

    Article  CAS  Google Scholar 

  34. Lian, Z., Liu, F., He, H., Shi, X., Mo, J., and Wu, Z., Chem. Eng. J., 2014, vol. 250, p. 390.

    Article  CAS  Google Scholar 

  35. Cheng, K., Liu, J., Zhao, Z., Wei, Y., Jiang, G., and Duan, A., RSC Adv., 2015, vol. 5, p. 45172.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 21 606 162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Li.

Additional information

Abbreviations: HMTA, hexamethylenetetramine; CHA, chabazite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Feng, J., Wang, J. et al. Surface Modification of Cu-SSZ-13 with CeO2 to Improve the Catalytic Performance for the Selective Catalytic Reduction of NO with NH3 . Kinet Catal 61, 750–757 (2020). https://doi.org/10.1134/S0023158420050109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420050109

Keywords:

Navigation