Skip to main content
Log in

Catalytic Generation of Radicals in Supramolecular Systems with Acetylcholine

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic effect of the most important neurotransmitter, acetylcholine (ACh), which, like cationic surfactants (S+), is able to form mixed microaggregates with hydroperoxides (ROOH) in organic media and accelerate ROOH decomposition into free radicals, has been considered. Chemisorbed on solid supports (cellulose, sodium montmorillonite) ACh as well as S+ catalytically decomposes ROOH and initiates radical chain oxidation and polymerization from the surface. A comparison of radical generation rates (Wi) by mixtures of ACh with cumyl and tert-butyl hydroperoxides in n-decane and chlorobenzene showed that Wi is relatively lowered in the presence of an aromatic fragment in a solvent or hydroperoxide. Phosphatidylcholine (РС) is a zwitterionic surfactant in which a choline cation is bound to a phosphate group. Non-transition metal ions Ca(II) and Mg(II) break the zwitterionic bond and convert РС into a cationic surfactant able to catalyze the radical decomposition of ROOH. The slowing effect of a moderate magnetic field of 0.157 T on the radical’s generation rate in mixtures of ROOH with S+, ACh, and PC treated with Ca(II) and Mg(II) salts was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Baig, A.M., Rana, Z., Tariq, S., Lalani, S., and Ahmad, H.R., ACS Chem. Neurosci., 2018, vol. 9, p. 494. https://doi.org/10.1021/acschemneuro.7b00254

    Article  CAS  PubMed  Google Scholar 

  2. Francis, P.T., Palmer, A.M., Snape, M., and Wilcock, G.K., J. Neurol. Neurosurg. Psychiatry, 1999, vol. 66, issue 2, p. 137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rahman, M.M., Curr. Proteomics, 2012, vol. 9, p. 272.

    Article  CAS  Google Scholar 

  4. Panraksa, Y., Siangproh, W.T., Khampieng, Chailapakul, O., and Apilux, A., Talanta, 2018, vol. 178, p. 1017.

    Article  CAS  PubMed  Google Scholar 

  5. Langmaier, J., Záliš, S., and Samec, Z., J. Electroanal. Chem., 2018, vol. 815, p. 183.

    Article  CAS  Google Scholar 

  6. Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., and Silman, I., Science, 1991, vol. 253, p. 872.

    Article  CAS  PubMed  Google Scholar 

  7. Quinn, D.M., Chem. Rev., 1987, vol. 87, p. 955

    Article  CAS  Google Scholar 

  8. Dougherty, D.A. and Stauffer, D.A., Science, 1990, vol. 250, p. 1558.

    Article  CAS  PubMed  Google Scholar 

  9. Dougherty, D.A., Science, 1996, vol. 271, p. 163.

    Article  CAS  PubMed  Google Scholar 

  10. Dougherty, D.A., Acc. Chem. Res., 2013, vol. 46, p. 885.

    Article  CAS  PubMed  Google Scholar 

  11. Ma, J.C. and Dougherty, D.A., Chem. Rev., 1997, vol. 97, p. 1303.

    Article  CAS  PubMed  Google Scholar 

  12. Van Arnam, E.B. and Dougherty, D.A., J. Med. Chem., 2014, vol. 57, p. 6289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davis, M.R. and Dougherty, D.A., Phys. Chem., 2015, vol. 17, p. 29262.

    CAS  Google Scholar 

  14. Cevc, G., Phospholipids Handbook, New York, 1993.

    Google Scholar 

  15. Mengele, E.A., Kartasheva, Z.S., Kasaikina, O.T., and Plashchina, I.G., Colloid J., 2008, vol. 70, no. 6, p. 753.

    Article  CAS  Google Scholar 

  16. Trunova, N.A., Kartasheva, Z.S., Maksimova, T.V., Kasaikina, O.T., and Bogdanova, Yu.P., Colloid J., 2007, vol. 69, p. 655.

    Article  CAS  Google Scholar 

  17. Kasaikina, O.T., Kartasheva, Z.S., and Pisarenko, L.M., Russ. J. Gen. Chem., 2008, vol. 78, p. 4866.

    Article  CAS  Google Scholar 

  18. Kasaikina, O.T., Golyavin, A.A., Krugovov, D.A, Kartasheva, Z.S., and Pisarenko, L.M., Moscow Univ. Chem. Bull., 2010, vol. 65, p. 206.

    Article  Google Scholar 

  19. Kartasheva, Z.S., Maksimova, T.V., Koverzanova, E.V., and Kasaikina, O.T., Pet. Chem., 1997, vol. 37, no. 2, p. 149.

    Google Scholar 

  20. Kasaikina, O.T., Kortenska, V.D., Kartasheva, Z.S., Kuznetsova, G.M, Maximova, T.V., Sirota, T.V., and Yanishlieva, N.V., Colloid. Surf., A, 1999, vol. 149, nos. 1–3, p. 29.

  21. Kasaikina, O.T., Kancheva, V.D., Maximova, T.V., Kartasheva, Z.S., Yanishlieva, N.V., Kondratovich, V.G., and Totseva, I.R., Oxid. Commun., 2006, no. 3, p. 574.

  22. Krugovov, D.A., Pisarenko, L.M., Kondratovich, V.G., Shchegolikhin, A.N., and Kasaikina, O.T., Pet. Chem., 2009, vol. 49. C. 120.

  23. Pisarenko, L.M. and Kasaikina, O.T., Russ. Chem. Bull., 2002, no. 3, p. 449.

  24. Kasaikina, O.T., Potapova, N.V., Krugovov, D.A., and Pisarenko, L.M., Kinet. Catal., 2017, vol. 58, no. 5, p. 556. https://doi.org/10.1134/S0023158417050093

    Article  CAS  Google Scholar 

  25. Krugovov, D.A., Mengele, E.A., and Kasaikina, O.T., Russ. Chem. Bull., 2014, vol. 63, p. 1837.

    Article  CAS  Google Scholar 

  26. Kasaikina, O.T. and Pisarenko, L.M., Russ. Chem. Bull., 2015, vol. 64, p. 2319.

    Article  CAS  Google Scholar 

  27. Kasaikina, O.T., Krugovov, D.A., Mengele, E.A., Berezin, M.P., and Fokin, D.A., Pet. Chem., 2015, vol. 55, p. 679.

    Article  CAS  Google Scholar 

  28. Kasaikina, O.T., Potapova, N.V., Krugovov, D.A., and Berezin, M.P., Polym. Sci., Ser. B, 2017, vol. 59, no. 3, p. 225.

    Article  CAS  Google Scholar 

  29. Koolman, J. and Roehm, K.H., Color Atlas of Biochemistry, Stuttgart: Thieme, 2005.

    Google Scholar 

  30. Lecerf, J.M. and de Lorgeril, M., Br. J. Nutr. 2011, vol. 106, issue 1, p. 6.

    Article  CAS  PubMed  Google Scholar 

  31. Behrman, E.J., Gopalan, V., and Scovell, W.M., J. Chem. Educ., 2005, vol. 82, issue 12, p. 1791.

    Article  CAS  Google Scholar 

  32. Manpreet, K. and Sandeep, K., Indo Am.J. Pharm. Sci., 2018, vol. 5, issue 5, p. 3417.

    CAS  Google Scholar 

  33. Juarez-Osornio, C. and Gracia-Fadrique, J., J. Liposome Res., 2017, vol. 27, issue 2, p. 139.

    Article  CAS  PubMed  Google Scholar 

  34. Opanasopit, P., Leksantikul, L., Niyomtham, N., Rojanarata, T., Ngawhirunpat, T., and Yingyongnarongkul, B.E., Pharm. Dev. Technol., 2017, vol. 22, issue 3, p. 350.

    Article  CAS  PubMed  Google Scholar 

  35. Giacometti, G., Marini, M., Papadopoulos, K., Ferreri, C., and Chatgilialoglu, C., Molecules, 2017, vol. 22, p. 2082.

    Article  PubMed Central  CAS  Google Scholar 

  36. Briuglia, M.L. and Rotella, C., Drug Delivery Transl. Res., 2015, vol. 5, p. 231.

    Article  CAS  Google Scholar 

  37. Bhattacharya, S. and Haldar, S., Biochim. Biophys. Acta,Biomembr., 2000, vol. 1467, p. 39.

    Article  CAS  Google Scholar 

  38. Lee, S.C., Lee, K.-E., Kim, J-J., and Lim, S.-H., J. Liposome Res., 2005, vol. 15, p. 157.

    Article  CAS  PubMed  Google Scholar 

  39. Tavano, L., Mazzotta, E., and Muzzalupo, R., Colloids Surf., B, 2018, vol. 164, p. 177.

    Article  CAS  Google Scholar 

  40. Muzzalupo, R., Pérez, L., Pinazo, A., and Tavano, L., Int. J. Pharm., 2017, vol. 529, p. 245.

    Article  CAS  PubMed  Google Scholar 

  41. Ghosh, R. and Dey, J., Langmuir, 2017, vol. 33, p. 543.

    Article  CAS  PubMed  Google Scholar 

  42. Sedgwick, M.A., Trujillo, A.M., Hendricks, N., Levinger, N.E., and Crans, D.S., Langmuir, 2011, vol. 27, no. 3, p. 948.

    Article  CAS  PubMed  Google Scholar 

  43. Potapova, N.V., Krugovov, D.A., and Kasaikina, O.T., Bulg. Chem. Commun., 2018, vol. 50. Special Issue C, p. 275.

  44. Kasaikina, O.T., Potapova, N.V., Krugovov, D.A., and Plashchina, I.G., Russ. Chem. Bull., 2018, vol. 67, p. 2141.

    Article  CAS  Google Scholar 

  45. Denisov, E.T. and Denisova, T.G., Handbook of Antioxidants: Bond Dissociation Energies, Rate Constants, Activation Energies and Enthalpies of Reactions, Boca Raton: CRC, 2000.

  46. Buchachenko, A.L., Russ. Chem. Rev., 2014, vol. 83, no. 1, p. 1.

    Article  CAS  Google Scholar 

  47. Buchachenko, A.L., Magneto-Biology and Medicine, New York: Nova Science, 2014.

    Google Scholar 

  48. Saunders, R., Prog. Biophys. Mol. Biol., 2005, vol. 87, p. 225.

    Article  PubMed  Google Scholar 

  49. Ghodbane, J., Lahbib, A., Sakly, M., and Abdelmetek, H., BioMed Res. Int. 2013, ID 602987. https://doi.org/10.1155/2013/602987

  50. Okano, H., Front. Biosci., 2008, vol. 13, p. 6106.

    Article  CAS  PubMed  Google Scholar 

  51. Buchachenko, A.L., Magnetic Isotope Effects in Chemistry and Biochemistry, New York: Nova Science, 2009.

    Google Scholar 

  52. Colbert, A.P., Souder, J., and Markov, M., Environmentalist, 2009, vol. 29, issue 2, p. 177.

    Article  Google Scholar 

  53. Zhao, G., Chen, S., and Wang, L., Bioelectromagnetics, 2011, vol. 32, issue 2, p. 94.

    Article  CAS  PubMed  Google Scholar 

  54. Ozhogina, O.A. and Kasaikina, O.T., Free Radical Biol. Med., 1995, vol. 19, no. 5, p. 575.

    Article  CAS  Google Scholar 

  55. Kanchev, V.D. and Kasaikina, O.T., Curr. Med. Chem., 2013, vol. 20, issue 37, p. 4784.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (grants No. 17-03-00364 and 18-33-00742) and state assignments 0082-2018-0006 no. АААА-А18-118020890097-1 and 0089-2019-0008 no. АААА-А19-119041090087-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Potapova.

Additional information

Abbreviations: ROOH, hydroperoxides; ACh, acetylcholine; S+, cationic surfactants; Wi, the rate of radical generation; PC, phosphatidylcholines; S, surfactant; AChE, acetylcholinesterase; AChR, ACh receptors; R4N+, quaternary ammonium compounds; Phe, phenylalanine; Tyr, tyrosine; Trp, tryptophan; HTB and HC, tert-butyl and cumyl hydroperoxides; CTAB and CPB, cetyltrimethylammonium and cetylpyridinium bromides; Q, quercetin; Chol, cholesterol; Car, β-carotene; DLS, dynamic light scattering; NNLS, non-negative least squares method; AOT, sodium bis(2-ethylhexyl) sulfosuccinate; M, sodium montmorillonite; Cel, microcrystalline cellulose; MP, magnetic fields; AIBN, azoisobutyronitrile.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapova, N.V., Kasaikina, O.T., Berezin, M.P. et al. Catalytic Generation of Radicals in Supramolecular Systems with Acetylcholine. Kinet Catal 61, 786–793 (2020). https://doi.org/10.1134/S0023158420050079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420050079

Keywords:

Navigation