Skip to main content
Log in

On well-posedness and large time behavior for smectic-A liquid crystals equations in \(\mathbb {R}^3\)

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The main purpose of this manuscript is to study the well-posedness and decay estimates for strong solutions to the Cauchy problem of 3D smectic-A liquid crystals equations. First, applying Banach fixed point theorem, we prove the local existence and uniqueness of strong solutions. Then, by establishing some nontrivial estimates with energy method and a standard continuity argument, we prove that there exists a unique global strong solution provided that the initial data are sufficiently small. Moreover, we also establish the suitable negative Sobolev norm estimates and obtain the optimal decay rates of the higher-order spatial derivatives of the strong solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abels, H.: Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Commun. Math. Phys. 289, 45–73 (2009)

    Article  MathSciNet  Google Scholar 

  2. Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194, 463–506 (2009)

    Article  MathSciNet  Google Scholar 

  3. Abels, H., Depner, D., Garcke, H.: On an incompressible Navier–Stokes/Cahn–Hilliard system with degenerate mobility. Ann. Inst. H. Poincaré Anal. Non Lineairé 30, 1175–1190 (2013)

    Article  MathSciNet  Google Scholar 

  4. Calderer, C., Liu, C.: Mathematical developments in the study of smectic A liquid crystals. Int. J. Eng. Sci. 38, 1113–1128 (2000)

    Article  MathSciNet  Google Scholar 

  5. Climent-Ezquerra, B., Guillén-González, F.: Global in-time solutions and time-periodicity for a semectic-A liquid crystal model. Commun. Pure Appl. Anal. 9, 1473–1493 (2010)

    Article  MathSciNet  Google Scholar 

  6. Climent-Ezquerra, B., Guillén-González, F.: On a double penalized smectic-A model. Discrete Contin. Dyn. Syst. Ser. A 32, 4171–4182 (2012)

    Article  MathSciNet  Google Scholar 

  7. Climent-Ezquerra, B., Guillén-González, F.: A review of mathematical analysis of nematic and smectic-A liquid crystal models. Eur. J. Appl. Math. 25, 133–153 (2014)

    Article  MathSciNet  Google Scholar 

  8. Climent-Ezquerra, B., Guillén-González, F.: Convergence to equilibrium for smectic-A liquid crystals in 3D domains without constraints for the viscosity. Nonlinear Anal. 102, 208–219 (2014)

    Article  MathSciNet  Google Scholar 

  9. Contreras, A., Garcia-Azpeitia, C., Garcia-Cervera, C.J., Joo, S.: The onset of layer undulations in smectic A liquid crystals due to a strong magnetic field. Nonlinearity 29, 2474–2496 (2016)

    Article  MathSciNet  Google Scholar 

  10. De Gennes, P.: Viscous flows in smectic-A liquid crystals. Phys. Fluids 17, 1645 (1974)

    Article  Google Scholar 

  11. De Gennes, P., Prost, J.: The Physics of Liquid Crystals. Oxford Publications, London (1993)

    Google Scholar 

  12. Eleuteri, M., Rocca, E., Schimperna, G.: Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1431–1454 (2016)

    Article  MathSciNet  Google Scholar 

  13. Ericksen, J.: Continuum theory of nematic liquid crystals. Res. Mechanica 21, 381–392 (1961)

    Google Scholar 

  14. Frigeri, S., Grasselli, M., Rocca, E.: A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility. Nonlinearity 28, 1257–1293 (2015)

    Article  MathSciNet  Google Scholar 

  15. Gal, C.G., Grasselli, M., Miranville, A.: Cahn–Hilliard–Navier-Stokes system with moving contact lines. Calc. Var. Partial Differ. Equ. 55, 1–47 (2016)

    Article  MathSciNet  Google Scholar 

  16. Gal, C.G., Grasselli, M., Wu, H.: Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities. Arch. Ration. Mech. Anal. 234(1), 1–56 (2019)

    Article  MathSciNet  Google Scholar 

  17. Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education Inc, Prentice-Hall (2004)

    MATH  Google Scholar 

  18. Guo, Y., Wang, Y.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equ. 37, 2165–2208 (2012)

    Article  MathSciNet  Google Scholar 

  19. Jiang, Z.: Asymptotic behavior of strong solutions to the 3D Navier–Stokes equations with a nonlinear damping term. Nonlinear Anal. 75(13), 5002–5009 (2012)

    Article  MathSciNet  Google Scholar 

  20. Jiang, Z., Fan, J.: Time decay rate for two 3D magnetohydrodynamics-\(\alpha \) models. Math. Methods Appl. Sci. 37(6), 838–845 (2014)

    Article  MathSciNet  Google Scholar 

  21. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  22. Lam, K.F., Wu, H.: Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis. Eur. J. Appl. Math. 29, 595–644 (2018)

    Article  MathSciNet  Google Scholar 

  23. Leslie, F.: Theory of flow phenomena in liquid crystals. Adv. Liq. Cryst. 4, 1–81 (1979)

    Article  Google Scholar 

  24. Liu, A., Liu, C.: Global attractor for a smectic-A liquid crystal model in 2D. Boll. Unione Mat. Ital. 11, 581–594 (2018)

    Article  MathSciNet  Google Scholar 

  25. Liu, C.: Dynamic theory for incompressible smectic liquid crystals: existence and regularity. Discrete Contin. Dyn. Syst. 6, 591–608 (2000)

    Article  MathSciNet  Google Scholar 

  26. Martin, P., Parodi, P., Pershan, P.: Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys. Rev. A 6, 2401 (1972)

    Article  Google Scholar 

  27. Nirenberg, L.: On elliptic partial differential equations. Annali della Scuola Normale Superiore di Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  28. Schonbek, M.E.: \(L^2\) decay for weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 88(2), 209–222 (1985)

    Article  MathSciNet  Google Scholar 

  29. Schonbek, M.E.: Large time behaviour of solutions to the Navier–Stokes equations. Commun. Partial Differ. Equ. 11(7), 733–763 (1986)

    Article  MathSciNet  Google Scholar 

  30. Segatti, A., Wu, H.: Finite dimensional reduction and convergence to equilibrium for incompressible smectic-A liquid crystal flows. SIAM J. Math. Anal. 43, 2445–2481 (2011)

    Article  MathSciNet  Google Scholar 

  31. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  32. Stewart, I.W., Vynnycky, M., McKee, S., Tomé, M.F.: Boundary layers in pressure-driven flow in smectic A liquid crystals. SIAM J. Appl. Math. 75, 1817–1851 (2015)

    Article  MathSciNet  Google Scholar 

  33. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland Publishing Co., Amsterdam (1977)

    MATH  Google Scholar 

  34. Wang, Y.: Decay of the Navier–Stokes–Poisson equations. J. Differ. Equ. 253, 273–297 (2012)

    Article  MathSciNet  Google Scholar 

  35. Weinan, E.: Nonlinear continuum theory of smectic-A liquid crystals. Arch. Ration. Mech. Anal. 137, 159–175 (1997)

    Article  MathSciNet  Google Scholar 

  36. Wu, H.: Well-posedness of a diffuse-interface model for two-phase incompressible flows with thermo-induced Marangoni effect. Eur. J. Appl. Math. 28(3), 380–434 (2017)

    Article  MathSciNet  Google Scholar 

  37. Wiegner, M.: Decay results for weak solutions of the Navier–Stokes equations on \(\mathbb{R}^n\). J. Lond. Math. Soc. 35, 303–313 (1987)

    Article  Google Scholar 

  38. Ye, Z., Zhao, X.: Global well-posedness of the generalized magnetohydrodynamic equations. Z. Angew. Math. Phys. 69, 126 (2018)

    Article  MathSciNet  Google Scholar 

  39. Zhao, X.: On the Cauchy problem of a sixth-order Cahn–Hilliard equation arising in oil–water–surfactant mixtures. Asymptotic Anal. https://doi.org/10.3233/ASY-201616

  40. Zhou, Y.: A remark on the decay of solutions to the 3-D Navier–Stokes equations. Math. Methods Appl. Sci. 30, 1223–1229 (2007)

    Article  MathSciNet  Google Scholar 

  41. Zhou, Y.: Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows. Nonlinearity 21(9), 2061–2071 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

XZ is supported by the Fundamental Research Funds for the Central Universities (Grant No. N2005031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zhou, Y. On well-posedness and large time behavior for smectic-A liquid crystals equations in \(\mathbb {R}^3\). Z. Angew. Math. Phys. 71, 179 (2020). https://doi.org/10.1007/s00033-020-01407-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01407-4

Keywords

Mathematics Subject Classification

Navigation