Skip to main content
Log in

Capacity Analysis of Hybrid MIMO Using Sparse Signal Processing in mmW 5G Heterogeneous Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The mmW cellular systems of large bandwidths offer multiple times rise in capacity as compared to existing 4G networks with comparable cell density. These avoid the unnecessary cell splitting by enlarging the capacity of individual tiny cells significantly in a scenario of very high-density cell deployments. This work will provide an opportunity to achieve a particular capacity value by varying the mmW channel gain in the 5G and 6G wireless networks. The OMP algorithm is modified and the existing sparse signal processing concept is utilized for the capacity analysis of hybrid MIMO here. The capacity (b/s/Hz) of the conventional and hybrid MIMOs are calculated and compared against given SNR range (dB) in a 5G mmW heterogeneous network under different values of mmW channel gain. It has been found that capacity analysis curves of conventional and hybrid MIMOs both show a descending trend with the increase in SNR range as the channel gain is increased due to over-saturation of the used sparse mmW channel. These curves exhibit local variation, time dependence, frequency selectivity, reliable communication rate, and diversity on both ends and the use of MIMO has a gain in degrees of freedom. The hybrid MIMO due to hardware limitations of conventional MIMO utilized a large number of antennas with lesser radio frequency chains. At some point of channel gain, its capacity curve approached the capacity curve of conventional MIMO in a moderate SNR range, and approached very closely for all channel gains in low and high SNR ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zeb, K., Zhang, X., & Lu, Z. (2019). High capacity mode division multiplexing based MIMO enabled all-optical analog millimeter-wave over fiber Fronthaul architecture for 5G and BEYOND. IEEE Access. Special Section on Roadmap to 5G: Rising to the Challenge, 7, 89522–89533.

    Google Scholar 

  2. Li, X., Zhou, R., Zhang, Y.-J. A., Jiao, L., & Li, Z. (2020). Smart vehicular communication via 5G mmWaves. Computer Networks, 172, 1–12.

    Google Scholar 

  3. Hong, X., Wang, J., Wang, C.-X., & Shi, J. (2014). Cognitive radio in 5G: A perspective on energy-spectral efficiency trade-off. IEEE Communications Magazine, 52(7), 46–53.

    Google Scholar 

  4. Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive-radio based internet of things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wireless Communications Magazine, 24(3), 17–25.

    Google Scholar 

  5. Wicks, M. (2010). Spectrum crowding and cognitive radar. In 2nd international workshop on IEEE cognitive information processing (CIP) (pp. 452–745).

  6. Litva, J., & Lo, T. (1996). Digital beamforming in wireless communication. Boston: Artech House.

    Google Scholar 

  7. Liu, J., Sheng, M., & Jiandong, L. (2018). Limitation of SDMA in Ultra-Dense Small Cell Networks. IEEE Wireless Communications Letters, 7(4), 506–509.

    Google Scholar 

  8. Al-Hadi, A. A., Ilvonen, J., Valkonen, R., & Viikari, V. (2014). Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band. Microwave and Optical Technology Letters, 56(6), 1323–1327.

    Google Scholar 

  9. Wong, K.-L., Kang, T.-W., & Tu, M.-F. (2011). ‘Internal mobile phone antenna array for LTE/WWAN and LTE MIMO operations. Microwave and Optical Technology Letters, 53(7), 1569–1573.

    Google Scholar 

  10. Jensen, M. A., & Wallace, J. W. (2004). A review of antennas and propagation for MIMO wireless communications. IEEE Transactions on Antennas and Propagation, 52(11), 2810–2824.

    Google Scholar 

  11. Saxena, A. K. (2009). Wideband audio source localization using microphone array and MUSIC algorithm. Master thesis, University of Applied Sciences Hamburg.

  12. Hwang, H. K., et al. (2008). Direction of arrival estimation using a root-MUSIC algorithm. In Proceedings of the International Multi Conference of Engineers and Computer Scientists, (IMECS 2008), (Vol. 2, pp. 1–4).

  13. Dongarsane, C. R., & Jadhav, A. N. (2011). Simulation study on DOA estimation using MUSIC algorithm. International Journal of Technology and Engineering System (IJTES), 2(1), 54–57.

    Google Scholar 

  14. Wu, Y., Leshem, A., Jensen, J. R., & Liao, G. (2015). Joint pitch and DOA estimation using the ESPRIT method. IEEE Audio, Speech, and Language Processing, IEEE/ACM Transactions, 23(1), 32–45.

    Google Scholar 

  15. Kitada, T. (2010). DoA estimation based on 2D-ESPRIT algorithm with multiple subarrays in hexagonal array. In IEEE Wireless Communications and Signal Processing, International Conference, pp. 1–6.

  16. Bermudez, J., et al. (2009). Simulation Study on DOA Estimation using ESPRIT Algorithm. Proceedings of the World Congress on Engineering and Computer Science, I, 6–9.

    Google Scholar 

  17. Lan, X., et al. (2014). A novel DOA estimation algorithm using array rotation technique. Future Internet, 6(1), 155–170.

    Google Scholar 

  18. Sun, C., & Karmakar, N. C. (2004). Direction of arrival estimation with a novel single-port smart antenna. EURASIP Journal on Applied Signal Processing, 9, 1364–1375.

    Google Scholar 

  19. Vincent Poor, H. (2002). long tong, signal processing for wireless communication systems. Boston: Kluwer.

    Google Scholar 

  20. Wu, Y., Hou, C., Liao, G., & Guo, Q. (2006). Direction-of-arrival estimation in the presence of unknown nonuniform noise fields. IEEE Journal of Oceanic Engineering, 31(2), 504–510.

    Google Scholar 

  21. Zhang, Y., Du, J., Chen, Y., Han, M., & Li, X. (2019). Optimal Hybrid Beamforming Design for Millimeter-Wave Massive Multi-User MIMO Relay Systems. IEEE Access, 7, 157212–157225.

    Google Scholar 

  22. Qui, M., & Zou, W. (2019). Low complexity joint hybrid precoding for millimeter wave MIMO systems. In China Communications (pp. 49–58).

  23. Zhang, J., Dai, L., He, Z., Jin, S., & Li, X. (2017). Performance analysis of mixed-ADC massive MIMO systems over Rician fading channels. IEEE Journal Selected Areas in Communication, 35(6), 1327–1338.

    Google Scholar 

  24. Liang, N., & Zhang, W. (2016). Mixed-ADC massive MIMO. IEEE Journal Selected Areas in Communication, 34(4), 983–997.

    Google Scholar 

  25. Zhang, T.-C., Wen, C.-K., Jin, S., & Jiang, T. (2016). Mixed-ADC massive MIMO detectors: Performance analysis and design optimization. IEEE Transactions on Wireless Communication, 15(11), 7738–7752.

    Google Scholar 

  26. Chen, Z., Sohrabi, F., & Wei, Yu. (2019). Multi-cell sparse activity detection for massive random access: Massive MIMO versus cooperative MIMO. IEEE Transactions on Wireless Communication, 18(8), 4060–4074.

    Google Scholar 

  27. Challita, F., Laly, P., Liénard, M., Tanghe, E., Joseph, W., & Gaillot, D. P. (2019). Hybrid virtual polarimetric massive MIMO measurements at 135 GHz. IET Microwaves, Antennas & Propagation, Special Section: Metrology for 5G Technologies, 13(15), 2610–2618.

    Google Scholar 

  28. Teodoro, S., Silva, A., Dinis, R., Barradas, F. M., Cabral, P. M., & Gameiro, A. (2019). Theoretical analysis of nonlinear amplification effects in massive MIMO systems. IEEE Access, 7, 172277–172289.

    Google Scholar 

  29. Zi, R., Liu, J., Liang, Gu, & Ge, X. (2019). Enabling security and high energy efficiency in the internet of things with massive MIMO hybrid precoding. IEEE Internet of Things Journal, 6(5), 8615–8625.

    Google Scholar 

  30. Ozarow, L., Shamai, S., & Wyner, A. (1994). Information-theoretic considerations in cellular mobile radio. IEEE Transactions on Vehicular Technology, 43(2), 359–378.

    Google Scholar 

  31. Proaksi, J. G., & Salehi, M. (2008). Digital communication (5th ed.). New York: McGraw-Hill Education.

    Google Scholar 

  32. Pollock, T. S., Abhayapala, T. D., & Kennedy, R. A. (2003). Introducing space into MIMO capacity calculations. Telecommunication Systems, 24(2–4), 415–436.

    Google Scholar 

  33. El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transaction on Wireless Communication, 13(3), 1499–1513.

    Google Scholar 

  34. Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846.

    Google Scholar 

  35. Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436–453.

    Google Scholar 

  36. Méndez-Rial, R., Rusu, C., González-Prelcic, N., Alkhateeb, A., & Heath, R. W. (2016). Hybrid MIMO architectures for millimeter wave communications: phase shifters or switches? IEEE Access, 4, 247–267.

    Google Scholar 

  37. Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). ‘State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.

    Google Scholar 

  38. Khan, F., & Pi, Z. (2011). Millimeter wave mobile broadband (MMB): Unleashing the 3–300 GHz spectrum. In Proceedings of the 34th IEEE Sarnoff Symposium.https://doi.org/10.1109/SARNOF.2011.5876482

  39. Khan, F., & Pi, Z. (2011). An introduction to millimeter wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.

    Google Scholar 

  40. Mo, J., & Heath, R. W. (2015). Capacity analysis of one-bit quantized MIMO systems with transmitter channel state information. IEEE Transactions on Signal Processing, 63(20), 5498–5512.

    MathSciNet  MATH  Google Scholar 

  41. Parker, D., & Zimmermann, D. Z. (2002). ‘Phased arrays V Part I: Theory and architecture’. IEEE Transactions on Microwave Theory and Techniques, 50(3), 678–687.

    Google Scholar 

  42. Koh, K.-J., & Rebeiz, G. M. (2007). 013-m CMOS phase shifters for X-, Ku- and K-band phased arrays. IEEE Journal of Solid-State Circuits, 42(11), 2535–2546.

    Google Scholar 

  43. Koh, K.-J., & Rebeiz, G. M. (2009). A millimeter wave (4045 GHz) 16-element phased-array transmitter in 0.18-m SiGe BiCMOS technology. IEEE Journal of Solid-State Circuits, 44(5), 1498–1509.

    Google Scholar 

  44. Crane, P. E. (1988). ‘Phased array scanning system. U.S. Patent 4 731 614.

  45. Raman, S., Barker, N. S., & Rebeiz, G. M. (1998). A W-band dielectric-lens-based integrated monopulse radar receive. IEEE Transactions on Microwave Theory and Techniques, 46(12), 2308–2316.

    Google Scholar 

  46. Guan, X., Hashemi, H., & Hajimiri, A. (2004). ‘A fully integrated 24-GHz eight-element phased-array receiver in silicon’. IEEE Journal of Solid-State Circuits, 39(12), 2311–2320.

    Google Scholar 

  47. Kwon, G., Kim, N., & Park, H. (2019). Millimeter wave SDMA with limited feedback: RF-only beamforming can outperform hybrid beamforming. IEEE Transactions on Vehicular Technology, 68(2), 1534–1548.

    Google Scholar 

  48. Sayeed, A., & Raghavan, V. (2007). Maximizing MIMO capacity in sparse multipath with reconfigurable antenna arrays. IEEE Journal of Selected Topics in Signal Processing, 1(1), 156–166.

    Google Scholar 

  49. Zhang, H., et al. (2010). Channel modeling and MIMO capacity for outdoor millimeter wave links (pp. 1–6). Sydney, Australia: Proc. IEEE WCNC.

    Google Scholar 

  50. He, J., et al. (2014) Millimeter wave MIMO channel tracking systems. In Proceedings of IEEE Globecom Austin, USA (pp. 1–6).

  51. Yoo, I., Imani, M. F., Sleasman, T., Pfister, H. D., & Smith, D. R. (2019). Enhancing capacity of spatial multiplexing systems using reconfigurable cavity-backed metasurface antennas in clustered MIMO channels. IEEE Transactions on Communications, 67(2), 1070–1084.

    Google Scholar 

  52. Zhang, K., Zhang, F., Zheng, G., & Saleem, A. (2019). GBSB model for MIMO channel using Leaky Coaxial cables in tunnel. IEEE Access, 7, 67646–67655.

    Google Scholar 

  53. Fan, D., Gao, F., Liu, Y., Deng, Y., Wang, G., Zhong, Z., et al. (2018). Angle domain channel estimation in hybrid millimeter wave massive MIMO systems. IEEE Transactions on Wireless Communications, 17(2), 8165–8179.

    Google Scholar 

  54. Wang, Y., & Zou, W. (2019). Low complexity hybrid precoder design for millimeter wave MIMO systems. IEEE Communications Letters, 23(7), 1259–1262.

    Google Scholar 

  55. Lee, J., Gil, G.-T., & Lee, Y. H. (2016). Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Transactions on Communications, 64, 2370–2386.

    Google Scholar 

  56. Wu, Y., Linnartz, J. P., Bergmans, J. W. M., & Attallah, S. (2008). Effects of antenna mutual coupling on the performance of MIMO systems. In 29th Symposium on information theory in the Benelux, Leuven, Belgium.

  57. Haleem, M. A. (2018). On the capacity and transmission techniques of massive MIMO systems. In Hindawi Wireless Communications and Mobile Computing of Wiley (pp 1–9).

  58. Zhang, R., Zou, W., Wang, Y., & Cui, M. (2019). Hybrid precoder and combiner design with finite resolution PSs for mmWave MIMO systems. China Communications, 16, 95–104.

    Google Scholar 

  59. Chen, C.-E. (2015). An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems. IEEE Wireless Communications Letters, 4(3), 285–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Chopra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopra, S., Kakkar, A. Capacity Analysis of Hybrid MIMO Using Sparse Signal Processing in mmW 5G Heterogeneous Wireless Networks. Wireless Pers Commun 116, 2651–2673 (2021). https://doi.org/10.1007/s11277-020-07815-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07815-z

Keywords

Navigation