Skip to main content
Log in

Unstable states in dissociation of relativistic nuclei

Recent findings and prospects of research

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Results are presented on the identification of the unstable nuclei \(^{8}\)Be and \(^{9}\)B and the Hoyle state (HS) in the relativistic dissociation of the isotopes \(^{9}\)Be, \(^{10}\)B, \(^{10}\)C, \(^{11}\)C, \(^{12}\)C, and \(^{16}\)O in a nuclear track emulsion (NTE). The main motivation for the study is the prospect of using these states in the search for more complex unstable states that decay with their participation. The possibilities of the NTE method for studying the contribution of multiple ensembles of the lightest He and H nuclei to the fragmentation of relativistic nuclei are described in brief. It is shown that to identify relativistic decays \(^{8}\)Be and \(^{9}\)B and HS in NTE, it is sufficient to determine the invariant mass as a function of angles in pairs and triples of He and H fragments in the approximation of conservation of momentum per nucleon of the parent nucleus. The formation of HS in the dissociation \(^{16}\)O \(\rightarrow \) 4\(\alpha \) is observed. According to the criteria established in this way, the contribution of the unstable states to the relativistic fragmentation of \(^{28}\)Si and \(^{197}\)Au nuclei was estimated. Promising applications of the NTE method in the study of nuclear fragmentation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sets are available upon request on the website http://becquerel.jinr.ru/.]

References

  1. C.F. Powell, P.H. Fowler, D.H. Perkins, Study of Elementary Particles by the Photographic Method (Pergamon, London, 1959)

    Google Scholar 

  2. H.L. Bradt, B. Peters, Phys. Rev. 77, 54 (1950). https://doi.org/10.1103/PhysRev.77.54

    Article  ADS  Google Scholar 

  3. H.H. Heckman, D.E. Greiner, P.J. Lindstrom, H. Shwe, Phys. Rev. C 17, 1735 (1978). https://doi.org/10.1103/PhysRevC.17.1735

    Article  ADS  Google Scholar 

  4. L. Anderson, W. Bruckner, E. Moeller, S. Nagamiya, S. Nissen-Meyer, L. Schroeder, G. Shapiro, H. Steiner, Phys. Rev. C 28, 1224 (1983). https://doi.org/10.1103/PhysRevC.28.1224

    Article  ADS  Google Scholar 

  5. A.G. Afonin, MYu. Bogolyubsky et al., Nucl. Phys. A 997, 121718 (2020). https://doi.org/10.1016/j.nuclphysa.2020.121718

    Article  Google Scholar 

  6. V.V. Glagolev et al., Eur. Phys. J. A 11, 285 (2001). https://doi.org/10.1007/s100500170067

    Article  ADS  Google Scholar 

  7. D.L. Olson et al., Phys. Rev. C 24(1), 529 (1981). https://doi.org/10.1103/PhysRevC.24.1529

    Article  ADS  Google Scholar 

  8. M.H. Smedberg et al., Phys. Lett. B 452, 1 (1999). https://doi.org/10.1016/S0370-2693(99)00245-2

    Article  ADS  Google Scholar 

  9. R. Thies et al., Phys. Rev. C 93, 054601 (2016). https://doi.org/10.1103/PhysRevC.93.054601

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Cortina-Gil et al., Nucl. Phys. A 720, 3 (2003). https://doi.org/10.1016/S0375-9474(03)00671-7

    Article  ADS  Google Scholar 

  11. F. Ajzenberg-Selove, Nucl. Phys. A 490, 1(1988) TUNL Nuclear Data Evaluation Project: http://www.tunl.duke.edu/NuclData/

  12. F. Wamers et al., Phys. Rev. C 97, 034612 (2018). https://doi.org/10.1103/PhysRevC.97.034612

    Article  ADS  Google Scholar 

  13. T. Aumann, Eur. Phys. J. A 55, 234 (2019). https://doi.org/10.1140/epja/i2019-12862-7

    Article  ADS  Google Scholar 

  14. J. Engelage et al., Phys. Lett. B 173, 34 (1986). https://doi.org/10.1016/0370-2693(86)91225-6

    Article  ADS  Google Scholar 

  15. T. Gorbinet et al., Eur. Phys. J. A 55, 11 (2019). https://doi.org/10.1140/epja/i2019-12683-8

    Article  ADS  Google Scholar 

  16. P.I. Zarubin, Lecture Notes in Physics, 875, Clusters in Nuclei, vol. 3 (Springer, Berlin, 2013), p. 51. https://doi.org/10.1007/978-3-319-01077-9_3

    Book  Google Scholar 

  17. D.A. Artemenkov, A.A. Zaitsev, P.I. Zarubin, Phys. Part. and Nucl. 48, 147 (2017). https://doi.org/10.1134/S106377961701002

    Article  ADS  Google Scholar 

  18. D.A. Artemenkov et al., Phys. Atom. Nucl. 80, 1126 (2017). https://doi.org/10.1134/S1063778817060047

    Article  ADS  Google Scholar 

  19. T. Toshito et al., Phys. Rev. C 78, 067602 (2008). https://doi.org/10.1103/PhysRevC.78.067602

    Article  ADS  Google Scholar 

  20. D.A. Artemenkov et al., Rad. Meas. 119, 199 (2018). https://doi.org/10.1016/j.radmeas.2018.11.005

    Article  Google Scholar 

  21. D.A. Artemenkov et al., Springer Proc. Phys. 238, 137 (2020). https://doi.org/10.1007/978-3-030-32357-8_24

    Article  Google Scholar 

  22. M. Freer, H.O.U. Fynbo, Progr. Part. Nucl. Phys. 78, 1 (2014). https://doi.org/10.1016/j.ppnp.2014.06.001

    Article  ADS  Google Scholar 

  23. T. Yamada, P. Schuck, Phys. Rev. C 69, 024309 (2004). https://doi.org/10.1103/PhysRevC.69.024309

    Article  ADS  Google Scholar 

  24. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Rev. Mod. Phys. 89, 011002 (2017). https://doi.org/10.1103/RevModPhys.89.011002

    Article  ADS  Google Scholar 

  25. M. Barbui et al., Phys. Rev. C 98, 044601 (2018). https://doi.org/10.1103/PhysRevC.98.044601

    Article  ADS  Google Scholar 

  26. R. Charity et al., Phys. Rev. C 99, 044304 (2019). https://doi.org/10.1103/PhysRevC.99.044304

    Article  ADS  Google Scholar 

  27. J. Bishop et al., Phys. Rev. C 100, 034320 (2019). https://doi.org/10.1103/PhysRevC.100.034320

    Article  ADS  MathSciNet  Google Scholar 

  28. The BECQUEREL Project http://becquerel.jinr.ru/movies/movies.html

  29. V.V. Belaga, A.A. Benjaza, V.V. Rusakova, D.A. Salomov, G.M. Chernov, Phys. Atom. Nucl. 58, 1905 (1995). arXiv:1109.0817

    ADS  Google Scholar 

  30. N.P. Andreeva et al., Phys. Atom. Nucl. 59, 102 (1996). arXiv:1109.3007

    ADS  Google Scholar 

  31. B.R. Fulton et al., Phys. Rev. C 70, 047602 (2004). https://doi.org/10.1103/PhysRevC.70.047602

    Article  ADS  Google Scholar 

  32. Y.L. Parfenova, Ch. Leclercq-Willain, Phys. Rev. C 72, 024312 (2005). https://doi.org/10.1103/PhysRevC.72.024312

    Article  ADS  Google Scholar 

  33. Y.L. Parfenova, Ch. Leclercq-Willain, Phys. Rev. C 72, 054304 (2005). https://doi.org/10.1103/PhysRevC.72.054304

    Article  ADS  Google Scholar 

  34. J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  ADS  Google Scholar 

  35. J. Aichelin, Phys. Rep. 202, 231 (1991). https://doi.org/10.1016/0370-1573(91)90094-3

    Article  ADS  Google Scholar 

  36. M.I. Adamovich et al., Z. Phys. A 351, 311 (1995). https://doi.org/10.1007/BF01290914

    Article  ADS  Google Scholar 

  37. M.I. Adamovich et al., Eur. Phys. J. A 5, 429 (1999). https://doi.org/10.1007/s100500050306

    Article  ADS  Google Scholar 

  38. S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010). https://doi.org/10.1103/PhysRevC.81.015803

    Article  ADS  Google Scholar 

  39. J.A. Kirk, D.M. Cottrell, J.J. Lord, R.J. Piserchio, Il Nuovo Cim. XL 523, 20 (1965). https://doi.org/10.1007/BF02721042

    Article  Google Scholar 

  40. P.L. Jain, K. Sengupta, G. Singh, Nucl. Phys. B 301, 517 (1988). https://doi.org/10.1016/0550-3213(88)90275-1

    Article  ADS  Google Scholar 

  41. D.A. Artemenkov et al., J. Phys. Conf. Ser. 675, 022022 (2016). https://doi.org/10.1088/1742-6596/675/2/022022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Zarubin.

Additional information

Communicated by David Blaschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemenkov, D.A., Bradnova, V., Chernyavsky, M.M. et al. Unstable states in dissociation of relativistic nuclei. Eur. Phys. J. A 56, 250 (2020). https://doi.org/10.1140/epja/s10050-020-00252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00252-3

Navigation