Skip to main content
Log in

Probabilistic Inversions for Time–Distance Helioseismology

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Time–distance helioseismology is a set of powerful tools to study localized features below the Sun’s surface. Inverse methods are needed to robustly interpret time–distance measurements, with many examples in the literature. However, techniques that utilize a more statistical approach to inferences, and that are broadly used in the astronomical community, are less-commonly found in helioseismology. This article aims to introduce a potentially powerful inversion scheme based on Bayesian probability theory and Monte Carlo sampling that is suitable for local helioseismology. We first describe the probabilistic method and how it is conceptually different from standard inversions used in local helioseismology. Several example calculations are carried out to compare and contrast the setup of the problems and the results that are obtained. The examples focus on two important phenomena that are currently outstanding issues in helioseismology: meridional circulation and supergranulation. Numerical models are used to compute synthetic observations, providing the added benefit of knowing the solution against which the results can be tested. For demonstration purposes, the problems are formulated in two and three dimensions, using both ray- and Born-theoretical approaches. The results seem to indicate that the probabilistic inversions not only find a better solution with much more realistic estimation of the uncertainties, but they also provide a broader view of the range of solutions possible for any given model, making the interpretation of the inversion more quantitative in nature. The probabilistic inversions are also easy to set up for a broad range of problems, and they can take advantage of software that is publicly available. Unlike the progress being made in fundamental measurement schemes in local helioseismology that image the far side of the Sun, or have detected signatures of global Rossby waves, among many others, inversions of those measurements have had significantly less success. Such statistical methods may help overcome some of these barriers to move the field forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. Indeed, the conclusions from earlier work using this model (Duvall and Hanasoge, 2012; Duvall, Hanasoge, and Chakraborty, 2014) showed a very shallow supergranule that is quite different from what other studies in the literature have found. While the analysis may very well be correct, more checks on the model need to be carried out, which is beyond the scope of this article

References

  • Arregui, I.: 2018, Bayesian coronal seismology. Adv. Space Res. 61, 655. DOI. ADS.

    Article  ADS  Google Scholar 

  • Backus, G.E., Gilbert, J.F.: 1968, The resolving power of gross Earth data. Geophys. J. Roy. Astron. Soc. 16, 169. DOI. ADS.

    Article  MATH  ADS  Google Scholar 

  • Basu, S.: 2016, Global seismology of the Sun. Liv. Rev. Solar Phys. 13, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bhattacharya, J., Hanasoge, S.M.: 2016, Strategies in seismic inference of supergranular flows on the Sun. Astrophys. J. 826, 105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Birch, A.C., Gizon, L.: 2007, Linear sensitivity of helioseismic travel times to local flows. Astron. Nachr. 328, 228. DOI. ADS.

    Article  MATH  ADS  Google Scholar 

  • Böning, V.G.A., Roth, M., Jackiewicz, J., Kholikov, S.: 2017, Validation of spherical born approximation sensitivity functions for measuring deep solar meridional flow. Astrophys. J. 838, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Braun, D.C., Birch, A.C.: 2008a, Prospects for the detection of the deep solar meridional circulation. Astrophys. J. Lett. 689, L161. DOI. ADS.

    Article  ADS  Google Scholar 

  • Braun, D.C., Birch, A.C.: 2008b, Surface-focused seismic holography of sunspots: I. Observations. Solar Phys. 251, 267. DOI. ADS.

    Article  ADS  Google Scholar 

  • Braun, D.C., Birch, A.C.: 2009, How much data do we need to detect the deep solar meridional circulation? In: Dikpati, M., Arentoft, T., González Hernández, I., Lindsey, C., Hill, F. (eds.) Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21, CS-416, Astron. Soc. Pacific, San Francisco, 131. ADS.

    Google Scholar 

  • Braun, D.C., Duvall, T.L. Jr., Labonte, B.J.: 1987, Acoustic absorption by sunspots. Astrophys. J. Lett. 319, L27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Hansen, P.C., Thompson, M.J.: 1993, Generalized singular value decomposition analysis of helioseismic inversions. Mon. Not. Roy. Astron. Soc. 264, 541. DOI. ADS.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Dappen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., Baturin, V.A., Berthomieu, G., Chaboyer, B., Chitre, S.M., Cox, A.N., Demarque, P., Donatowicz, J., Dziembowski, W.A., Gabriel, M., Gough, D.O., Guenther, D.B., Guzik, J.A., Harvey, J.W., Hill, F., Houdek, G., Iglesias, C.A., Kosovichev, A.G., Leibacher, J.W., Morel, P., Proffitt, C.R., Provost, J., Reiter, J., Rhodes, E.J. Jr., Rogers, F.J., Roxburgh, I.W., Thompson, M.J., Ulrich, R.K.: 1996, The current state of solar modeling. Science 272, 1286. ADS.

    Article  ADS  Google Scholar 

  • Corbard, T., Berthomieu, G., Morel, P., Provost, J., Schou, J., Tomczyk, S.: 1997, Solar internal rotation from LOWL data. A 2D regularized least-squares inversion using B-splines. Astron. Astrophys. 324, 298. ADS.

    ADS  Google Scholar 

  • Corsaro, E., De Ridder, J.: 2014, DIAMONDS: a new Bayesian nested sampling tool. Application to peak bagging of solar-like oscillations. Astron. Astrophys. 571, A71. DOI. ADS.

    Article  Google Scholar 

  • Couvidat, S., Birch, A.C., Kosovichev, A.G.: 2006, Three-dimensional inversion of sound speed below a sunspot in the born approximation. Astrophys. J. 640, 516. DOI. ADS.

    Article  ADS  Google Scholar 

  • DeGrave, K., Jackiewicz, J., Rempel, M.: 2014, Validating time-distance helioseismology with realistic quiet-Sun simulations. Astrophys. J. 788, 127. DOI. ADS.

    Article  ADS  Google Scholar 

  • DeGrave, K., Braun, D.C., Birch, A.C., Crouch, A.D., Javornik, B.: 2018, Validating forward modeling and inversions of helioseismic holography measurements. Astrophys. J. 863, 34. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dhruv, V., Bhattacharya, J., Hanasoge, S.M.: 2019, Validating time-distance helioseismic inversions for nonseparable subsurface profiles of an average supergranule. Astrophys. J. 883, 136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dikpati, M., Charbonneau, P.: 1999, A Babcock–Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dombroski, D.E., Birch, A.C., Braun, D.C., Hanasoge, S.M.: 2013, Testing helioseismic-holography inversions for supergranular flows using synthetic data. Solar Phys. 282, 361. DOI. ADS.

    Article  ADS  Google Scholar 

  • Duvall, T.L. Jr., Birch, A.C.: 2010, The vertical component of the supergranular motion. Astrophys. J. Lett. 725, L47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Duvall, T.L. Jr., Hanasoge, S.M.: 2012, Subsurface supergranular vertical flows as measured using large distance separations in time-distance helioseismology. Solar Phys., 136. DOI. ADS.

  • Duvall, T.L. Jr., Hanasoge, S.M., Chakraborty, S.: 2014, Additional evidence supporting a model of shallow, high-speed supergranulation. Solar Phys. 289, 3421. DOI. ADS.

    Article  ADS  Google Scholar 

  • Duvall, T.L. Jr., Kosovichev, A.G., Scherrer, P.H., Bogart, R.S., Bush, R.I., de Forest, C., Hoeksema, J.T., Schou, J., Saba, J.L.R., Tarbell, T.D., Title, A.M., Wolfson, C.J., Milford, P.N.: 1997, Time-distance helioseismology with the MDI instrument: initial results. Solar Phys. 170, 63. ADS.

    Article  ADS  Google Scholar 

  • Ferret, R.Z.: 2019, SDO/HMI observations of the average supergranule are not compatible with separable flow models. Astron. Astrophys. 623, A98. DOI. ADS.

    Article  ADS  Google Scholar 

  • Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: 2013, emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fournier, D., Gizon, L., Hohage, T., Birch, A.C.: 2014, Generalization of the noise model for time-distance helioseismology. Astron. Astrophys. 567, A137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Giles, P.M., Duvall, T.L. Jr., Scherrer, P.H., Bogart, R.S.: 1997, A subsurface flow of material from the Sun’s equator to its poles. Nature 390, 52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A.C.: 2002, Time-distance helioseismology: the forward problem for random distributed sources. Astrophys. J. 571, 966. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A.C.: 2004, Time–distance helioseismology: noise estimation. Astrophys. J. 614, 472. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A.C., Spruit, H.C.: 2010, Local helioseismology: three-dimensional imaging of the solar interior. Annu. Rev. Astron. Astrophys. 48, 289. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gizon, L., Schunker, H., Baldner, C.S., Basu, S., Birch, A.C., Bogart, R.S., Braun, D.C., Cameron, R., Duvall, T.L. Jr., Hanasoge, S.M., Jackiewicz, J., Roth, M., Stahn, T., Thompson, M.J., Zharkov, S.: 2009, Helioseismology of sunspots: a case study of NOAA region 9787. Space Sci. Rev. 144, 249. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goodman, J., Weare, J.: 2010, Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65. DOI. ADS.

    Article  MathSciNet  MATH  Google Scholar 

  • Gough, D.O., Thompson, M.J.: 1991,. In: Cox, A.N., Livingston, W.C., Matthews, M. S. (eds.) The Inversion Problem, 519. ADS.

    Google Scholar 

  • Greer, B.J., Hindman, B.W., Toomre, J.: 2016, Helioseismic imaging of supergranulation throughout the Sun’s near-surface shear layer. Astrophys. J. 824, 128. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hanasoge, S.M.: 2014, Full waveform inversion of solar interior flows. Astrophys. J. 797, 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hanasoge, S., Mandal, K.: 2019, Detection of Rossby waves in the Sun using normal-mode coupling. arXiv e-prints, arXiv. ADS.

  • Hanasoge, S.M., Larsen, R.M., Duvall, T.L. Jr., DeRosa, M.L., Hurlburt, N.E., Schou, J., Roth, M., Christensen-Dalsgaard, J., Lele, S.K.: 2006, Computational acoustics in spherical geometry: steps toward validating helioseismology. Astrophys. J. 648, 1268. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hanasoge, S.M., Birch, A., Gizon, L., Tromp, J.: 2011, The adjoint method applied to time-distance helioseismology. Astrophys. J. 738, 100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hartlep, T., Zhao, J., Kosovichev, A.G., Mansour, N.N.: 2013, Solar wave-field simulation for testing prospects of helioseismic measurements of deep meridional flows. Astrophys. J. 762, 132. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2012, Supergranules as probes of solar convection zone dynamics. Astrophys. J. Lett. 749, L13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hilbe, J.M., de Souza, R.S., Ishida, E.E.O.: 2017, Bayesian Models for Astrophysical Data Using R, JAGS, Python, and Stan. DOI. ADS.

    Book  MATH  Google Scholar 

  • Hogg, D.W., Foreman-Mackey, D.: 2018, Data analysis recipes: using Markov chain Monte Carlo. Astrophys. J. Suppl. 236, 11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R.: 2009, Solar interior rotation and its variation. Liv. Rev. Solar Phys. 6, 1. ADS.

    ADS  Google Scholar 

  • Jackiewicz, J., Gizon, L., Birch, A.C.: 2008, High-resolution mapping of flows in the solar interior: fully consistent OLA inversion of helioseismic travel times. Solar Phys. 251, 381. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jackiewicz, J., Serebryanskiy, A., Kholikov, S.: 2015, Meridional flow in the solar convection zone. II. Helioseismic inversions of GONG data. Astrophys. J. 805, 133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jackiewicz, J., Birch, A.C., Gizon, L., Hanasoge, S.M., Hohage, T., Ruffio, J.-B., Švanda, M.: 2012, Multichannel three-dimensional SOLA inversion for local helioseismology. Solar Phys. 276, 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jensen, J.M., Jacobsen, B.H., Christensen-Dalsgaard, J.: 1998, MCD inversion for sound speed using time-distance data. In: Korzennik, S. (ed.) Structure and Dynamics of the Interior of the Sun and Sun-like Stars, SP-418, ESA, Noordwijk, 635. ADS.

    Google Scholar 

  • Komm, R., Howe, R., Hill, F., Miesch, M., Haber, D., Hindman, B.: 2007, Divergence and vorticity of solar subsurface flows derived from ring-diagram analysis of MDI and GONG data. Astrophys. J. 667, 571. DOI. ADS.

    Article  ADS  Google Scholar 

  • Korda, D., Švanda, M.: 2019, Combined helioseismic inversions for 3D vector flows and sound-speed perturbations. Astron. Astrophys. 622, A163. DOI. ADS.

    Article  ADS  Google Scholar 

  • Korda, D., Švanda, M., Zhao, J.: 2019, Comparison of time-distance inversion methods applied to SDO/HMI dopplergrams. Astron. Astrophys. 629, A55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosovichev, A.G., Duvall, T.L. Jr.: 1997, Acoustic tomography of solar convective flows and structures. In: Pijpers, F.P., Christensen-Dalsgaard, J., Rosenthal, C.S. (eds.) ASSL 225: SCORe’96: Solar Convection and Oscillations and Their Relationship, Kluwer, Dordrecht, 241. ADS.

    Chapter  Google Scholar 

  • Kosovichev, A.G., Zharkova, V.V.: 1998, X-ray flare sparks quake inside Sun. Nature 393, 317. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liang, Z.-C., Chou, D.-Y.: 2015, Effects of solar surface magnetic fields on the time-distance analysis of solar subsurface meridional flows. Astrophys. J. 805, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liang, Z.-C., Gizon, L., Birch, A.C., Duvall, T.L. Jr., Rajaguru, S.P.: 2018, Solar meridional circulation from twenty-one years of SOHO/MDI and SDO/HMI observations. Helioseismic travel times and forward modeling in the ray approximation. Astron. Astrophys. 619, A99. DOI. ADS.

    Article  Google Scholar 

  • Lindsey, C., Braun, D.C.: 2000, Basic principles of solar acoustic holography. Solar Phys. 192, 261. ADS.

    Article  ADS  Google Scholar 

  • Löptien, B., Gizon, L., Birch, A.C., Schou, J., Proxauf, B., Duvall, T.L. Jr., Bogart, R.S., Christensen, U.R.: 2018, Global-scale equatorial Rossby waves as an essential component of solar internal dynamics. Nat. Astron. 2, 568. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moradi, H., Baldner, C., Birch, A.C., Braun, D.C., Cameron, R.H., Duvall, T.L. Jr., Gizon, L., Haber, D., Hanasoge, S.M., Hindman, B.W., Jackiewicz, J., Khomenko, E., Komm, R., Rajaguru, P., Rempel, M., Roth, M., Schlichenmaier, R., Schunker, H., Spruit, H.C., Strassmeier, K.G., Thompson, M.J., Zharkov, S.: 2010, Modeling the subsurface structure of sunspots. Solar Phys., 171. DOI. ADS.

  • Pijpers, F.P., Thompson, M.J.: 1994, The SOLA method for helioseismic inversion. Astron. Astrophys. 281, 231. ADS.

    ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 2007, Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge. ISBN: 0521880688.

    MATH  Google Scholar 

  • Proxauf, B., Gizon, L., Löptien, B., Schou, J., Birch, A.C., Bogart, R.S.: 2020, Exploring the latitude and depth dependence of solar Rossby waves using ring-diagram analysis. Astron. Astrophys. 634, A44. DOI. arXiv. ADS.

    Article  ADS  Google Scholar 

  • Rajaguru, S.P., Antia, H.M.: 2015, Meridional circulation in the solar convection zone: time-distance helioseismic inferences from four years of HMI/SDO observations. Astrophys. J. 813, 114. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rieutord, M., Rincon, F.: 2010, The Sun’s supergranulation. Liv. Rev. Solar Phys. 7, 2. ADS.

    ADS  Google Scholar 

  • Sambridge, M., Mosegaard, K.: 2002, Monte Carlo methods in geophysical inverse problems. Rev. Geophys. 40, 1009. DOI. ADS.

    Article  MATH  ADS  Google Scholar 

  • Schou, J., Christensen-Dalsgaard, J., Thompson, M.J.: 1994, On comparing helioseismic two-dimensional inversion methods. Astrophys. J. 433, 389. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sharma, S.: 2017, Markov chain Monte Carlo methods for Bayesian data analysis in astronomy. Annu. Rev. Astron. Astrophys. 55, 213. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sokal, A.: 1997. In: DeWitt-Morette, C., Cartier, P., Folacci, A. (eds.) Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms, Springer, Boston, 131. DOI.

    Chapter  MATH  Google Scholar 

  • Švanda, M.: 2012, Inversions for average supergranular flows using finite-frequency kernels. Astrophys. J. Lett. 759, L29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Švanda, M.: 2015, Issues with time-distance inversions for supergranular flows. Astron. Astrophys. 575, A122. DOI. ADS.

    Article  ADS  Google Scholar 

  • Švanda, M., Gizon, L., Hanasoge, S.M., Ustyugov, S.D.: 2011, Validated helioseismic inversions for 3D vector flows. Astron. Astrophys. 530, A148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tarantola, A.: 2005, Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics, Philadelphia.

    Book  Google Scholar 

  • Thompson, M.J., Christensen-Dalsgaard, J., Miesch, M.S., Toomre, J.: 2003, The internal rotation of the Sun. Annu. Rev. Astron. Astrophys. 41, 599. DOI. ADS.

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Choudhuri, A.R.: 1988, The possible role of meridional flows in suppressing magnetic buoyancy. Astrophys. J. 333, 965. DOI. ADS.

    Article  ADS  Google Scholar 

  • Woodard, M.F.: 2002, Solar subsurface flow inferred directly from frequency-wavenumber correlations in the seismic velocity field. Astrophys. J. 565, 634. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, J.: 2007, Time-distance imaging of solar far-side active regions. Astrophys. J. Lett. 664, L139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, J., Kosovichev, A.G.: 2003, On the inference of supergranular flows by time-distance helioseismology. In: Sawaya-Lacoste, H. (ed.) GONG+ 2002. Local and Global Helioseismology: The Present and Future, SP-517, ESA, Noordwijk, 417. ADS.

    Google Scholar 

  • Zhao, J., Georgobiani, D., Kosovichev, A.G., Benson, D., Stein, R.F., Nordlund, Å.: 2007, Validation of time-distance helioseismology by use of realistic simulations of solar convection. Astrophys. J. 659, 848. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, J., Couvidat, S., Bogart, R.S., Parchevsky, K.V., Birch, A.C., Duvall, T.L. Jr., Beck, J.G., Kosovichev, A.G., Scherrer, P.H.: 2012, Time-distance helioseismology data-analysis pipeline for helioseismic and magnetic imager onboard Solar Dynamics Observatory (SDO/HMI) and its initial results. Solar Phys. 275, 375. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, J., Bogart, R.S., Kosovichev, A.G., Duvall, T.L. Jr., Hartlep, T.: 2013, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun. Astrophys. J. Lett. 774, L29. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the life and work of the late Michael J. Thompson, who unselfishly taught me a significant amount of inverse theory. The author wishes to thank Aaron Birch, Aleczander Herczeg, Jon Holtzman, and Shukur Kholikov for fruitful discussions, as well as Doug Braun for making the simulation data publicly available. The article made use of the GWMCMC code written by Aslak Grinsted. Partial funding support is acknowledged from the National Science Foundation under Grant Number 1351311 and from NASA under Award Number 80NSSC18K0672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Jackiewicz.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Supergranulation Inversion Details

This article presents a comparison of six SOLA inversions (two flow components at three target depths) to the probabilistic one for a simulated supergranule model. For completeness, details of the inversions and how they are compared are itemized here:

  1. i)

    The simulation domain is 100 Mm on a side horizontally, sampled evenly at \(1/3\) Mm. It extends to −25 Mm at the bottom boundary. Cross correlations and travel times were measured in an area 50 Mm on a side at the same sampling. Each map is therefore \(150\times 150\) points.

  2. ii)

    Born-sensitivity kernels are computed on the same horizontal grid as the travel times and they extend to 15 Mm below the surface using 55 points in depth. The kernels use input model power spectra that have been Fourier filtered to separately retain the first three radial orders, including the \(f\)-mode. Everything is computed to match the details of the travel times as discussed in Section 3.2.2.

  3. iii)

    The SOLA inversion code is the faster formulation in Fourier space that can be run in parallel (Jackiewicz et al., 2012). It includes a cross-talk parameter as in Švanda et al. (2011). Trade-off curves (L-curves) were studied to find the best regularization parameters. To obtain sensible results in terms of noise and misfit, the 3D Gaussian target functions have FWHM on the order of 10 Mm and 3 Mm in the horizontal and vertical directions, respectively. In general, the SOLA inversion results are very similar to the ones published by Dombroski et al. (2013) using an RLS inversion scheme.

  4. iv)

    The probabilistic inversion has \(2\times 10^{5}\) steps. Each of the five parameters was assigned 120 walkers. With thinning every five steps, the PDF was sampled \(2\times 10^{5}/(120\times 5) = 333\) times per walker, as before. More walkers were used in this inversion than the meridional example because the PDFs are more complicated, and it is suggested to use more walkers for good sampling. These values are sufficient to give good autocorrelation properties of the walker time series.

  5. v)

    The data vector \({\boldsymbol{d}} \) is composed of only a small subset (12 of the 135) of the travel-time measurement maps. To speed up the computation, each of the \(150\times 150\) pixel maps was binned down to only \(19\times 19\) pixels. The data vector is therefore 4332 measurements. To match the size of the data vector, the forward vector resulting from the operation \(g( {\boldsymbol{m}} )\) uses kernels that are also binned down. This is noteworthy, in that the SOLA inversion uses the full maps. The probabilistic inversion is quite powerful with substantially less data. Of course, the 4332 measurements are not all completely independent, as described by the covariance matrix.

  6. vi)

    The full noise covariance matrix used in the likelihood function (Equation 17) was constructed from smaller pairs of covariances \({\mathrm{Cov}}[\delta \tau _{i},\delta \tau _{j}]\) and ordered to correctly match the travel-time data vector.

  7. vii)

    The uniform priors on the model are given in Table 1. As is common (Foreman-Mackey et al., 2013), the walkers are initialized with values in a small Gaussian ball, centered somewhere within the prior bounds. The initial guess is not critical, as the walkers soon quickly explore the full parameter space after the burn-in stage.

  8. viii)

    The entire run on a two-core desktop machine (thus minimal parallelization) was about 80 minutes. The most expensive task is the computation of the forward travel times in Equation 29, which takes about 0.2 seconds each.

Appendix B: Supergranulation Flow Inversions

A few more results are presented here to add to those in Section 3.2.3. The corner plot for the probabilistic inversion is given in Figure 9.

The flow-inversion comparison near the top of the simulation domain is shown in Figure 10. For the horizontal flows, the SOLA inversion underestimates the (smoothed) flow amplitude by about a factor of two, while the probabilistic inversion overestimates the amplitude by \(15\,\%\). The profile structure is primarily determined by parameters \(p_{4}\) and \(p_{5}\). The peak vertical velocity is underestimated by 35% in the SOLA inversion, and it is overestimated by 60% in the probabilistic inversion. The \(f\)-mode is generally the most sensitive at these layers, but its sensitivity to vertical flows is weak. This affects both inversions. \(v_{z}^{\mathrm{SOLA}}\) also has artifacts in its flow structure.

Figure 10
figure 10

Comparison of supergranulation inversion results at the model photosphere. The left (right) panels are for the \(v_{x}\) (\(v_{z}\)) inversion. The top rows are the flow fields for the simulation, the SOLA inversion, and the probabilistic inversion computed from the median of the PDF. Darker shading corresponds to positive velocities, and the scale is the same in each set. The bottom panels are cuts through the supergranule at \(y=0\), given by the dashed line in the top panels. Twenty random samples of the PDF are drawn and computed in the model space. A few representative points from the SOLA inversion are given with uncertainties.

A comparison near 5 Mm beneath the surface is given in Figure 11. As is common in standard helioseismic inversions using typical data sets, the inferences at this depth are uninformative (Zhao et al., 2007). The vertical velocity inferred is weak and is the wrong sign, which was also noticed in Dombroski et al. (2013). The probabilistic inversion provides a good estimate of the flow structure at this depth.

Figure 11
figure 11

Comparison of supergranulation inversion results near about 5 Mm beneath the model photosphere. The left (right) panels are for the \(v_{x}\) (\(v_{z}\)) inversion. The top rows are the flow fields for the simulation, the SOLA inversion, and the probabilistic inversion computed from the median of the PDF. Darker shading corresponds to positive velocities, and the scale is the same in each set. The bottom panels are cuts through the supergranule at \(y=0\), given by the dashed line in the top panels. Twenty random samples of the PDF are drawn and computed in the model space. A few representative points from the SOLA inversion are given with uncertainties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackiewicz, J. Probabilistic Inversions for Time–Distance Helioseismology. Sol Phys 295, 137 (2020). https://doi.org/10.1007/s11207-020-01667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01667-3

Keywords

Navigation