Skip to main content
Log in

Predicting the Shape of Solar Cycle 25 Using a Similar-Cycle Method

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A similar-cycle method is applied in predicting the shape of Solar Cycle 25, through a more scientific definition to select similar cycles. Using the current solar minimum \(R_{\mathrm{min}}(25)\) as a reference, the six most similar cycles to Solar Cycle 25 are found to be Cycles 24, 15, 12, 14, 17, and 10 (in that order). The monthly values of sunspot-number series for the whole of Cycle 25 are predicted by weighted averaging the corresponding ones in the six similar cycles. As a result, Solar Cycle 25 is predicted to peak around October 2024 with an amplitude of about \(R_{\mathrm{m}}=137.8\pm 31.3\) and to end around September 2030. As a by-product, there might be a secondary peak eight months earlier. The similar-cycle method considers only the solar cycles with similar parameters rather than all ones as for regression methods. It has an advantage that it does not depend so much on the accuracy of the observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI.

    Article  ADS  Google Scholar 

  • Brown, G.M., Williams, W.R.: 1969, Some properties of the day-to-day variability of Sq(H). Planet. Space Sci. 17, 455. DOI.

    Article  ADS  Google Scholar 

  • Cameron, R., Schüssler, M.: 2008, A robust correlation between growth rate and amplitude of solar cycles: consequences for prediction methods. Astrophys. J. 685, 1291. DOI.

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103. DOI.

    Article  ADS  Google Scholar 

  • Clette, F., Cliver, E., Lefèvre, L., Svalgaard, L., Vaquero, J., Leibacher, J.: 2016, Preface to topical issue: recalibration of the sunspot number. Solar Phys. 291, 2479. DOI.

    Article  ADS  Google Scholar 

  • Dikpati, M., de Toma, G., Gilman, P.A.: 2006, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, L05102. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2011a, The relationship between prediction accuracy and correlation coefficient. Solar Phys. 270, 407. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2011b, The shape of solar cycle described by a modified Gaussian function. Solar Phys. 273, 231. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2020a, The solar cycle: predicting the peak of solar cycle 25. Astrophys. Space Sci. 365, 104. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2020b, Predicting the amplitude of solar cycle 25 using the value 39 months before the solar minimum. Solar. Phys., accepted.

  • Du, Z.L., Li, R., Wang, H.N.: 2009, The predictive power of Ohl’s precursor method. Astron. J. 138, 1998. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N.: 2010, Does a low solar cycle minimum hint at a weak upcoming cycle? Res. Astron. Astrophys. 10, 950. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N.: 2011, The prediction method of similar cycles. Res. Astron. Astrophys. 11, 1482. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N.: 2012, Predicting the solar maximum with the rising rate. Sci. China Ser. G, Phys. Mech. Astron. 55, 365. DOI.

    Article  ADS  Google Scholar 

  • Gleissberg, W.: 1971, The probable behaviour of sunspot cycle 21. Solar Phys. 21, 240. DOI.

    Article  ADS  Google Scholar 

  • Han, Y.B., Wang, J.L.: 1999, Predicting monthly sunspot numbers of solar cycle 23 by the method of “similar cycles”. Chin. Astron. Astrophys. 23, 139. DOI.

    Article  ADS  Google Scholar 

  • Han, Y.B., Yin, Z.Q.: 2019, A decline phase modeling for the prediction of solar cycle 25. Solar Phys. 294, 107. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2015, The solar cycle. Liv. Rev. Solar Phys. 12, 4. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, The shape of the sunspot cycle. Solar Phys. 151, 177. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: sunspot cycle characteristics. Solar Phys. 211, 357. DOI.

    Article  ADS  Google Scholar 

  • Kane, R.P.: 2007, A preliminary estimate of the size of the coming solar cycle 24, based on Ohl’s precursor method. Solar Phys. 243, 205. DOI.

    Article  ADS  Google Scholar 

  • Labonville, F., Charbonneau, P., Lemerle, A.: 2019, A dynamo-based forecast of solar cycle 25. Solar Phys. 294, 82. DOI.

    Article  ADS  Google Scholar 

  • Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI.

    Article  ADS  Google Scholar 

  • Miao, J., Wang, J.L., Liu, S.Q., Gong, J.C.: 2008, Prediction of the beginning of solar activity cycle 24 by the similar cycle method. Chin. Astron. Astrophys. 32, 260. DOI.

    Article  ADS  Google Scholar 

  • Nordemann, D.J.R., Trivedi, N.B.: 1992, Sunspot number time series – exponential fitting and periodicites. Solar Phys. 142, 411. DOI.

    Article  ADS  Google Scholar 

  • Ohl, A.I., Ohl, G.I.: 1979, A new method of very long-term prediction of solar activity. In: Solar-Terrest. Predictions Proc. 2, 258. NASA/MSFC, ADS.

    Google Scholar 

  • Pesnell, W.D.: 2008, Predictions of solar cycle 24. Solar Phys. 252, 209. DOI.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Schatten, K.H.: 2018, An early prediction of the amplitude of solar cycle 25. Solar Phys. 293, 112. DOI.

    Article  ADS  Google Scholar 

  • Ramesh, K.B., Lakshmi, N.B.: 2012, The amplitude of sunspot minimum as a favorable precursor for the prediction of the amplitude of the next solar maximum and the limit of the Waldmeier effect. Solar Phys. 276, 395. DOI.

    Article  ADS  Google Scholar 

  • Schatten, K.H.: 2005, Fair space weather for solar cycle 24. Geophys. Res. Lett. 32, L21106. DOI.

    Article  ADS  Google Scholar 

  • Schatten, K.H., Scherrer, P.H., Svalgaard, L., Wilcox, J.M.: 1978, Using dynamo theory to predict the sunspot number during Solar Cycle 21. Geophys. Res. Lett. 5, 411. DOI.

    Article  ADS  Google Scholar 

  • Stewart, J.Q., Panofsky, H.A.A.: 1938, The mathematical characteristics of sunspot variations. Astrophys. J. 88, 385. DOI.

    Article  ADS  MATH  Google Scholar 

  • Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104. DOI.

    Article  ADS  Google Scholar 

  • Thompson, R.J.: 1988, The rise of solar cycle number 22. Solar Phys. 117, 279. DOI.

    Article  ADS  Google Scholar 

  • Thompson, R.J.: 1993, A technique for predicting the amplitude of the solar cycle. Solar Phys. 148, 383. DOI.

    Article  ADS  Google Scholar 

  • Volobuev, D.M.: 2009, The shape of the sunspot cycle: a one-parameter fit. Solar Phys. 258, 319. DOI.

    Article  ADS  Google Scholar 

  • Wang, J.L., Han, Y.B.: 1997, Forecasts of smoothed monthly mean sunspot numbers and non-smoothed monthly mean sunspot number for solar cycle 23. In: Astrophys. Rep. 1(Suppl), 76. ADS.

    Google Scholar 

  • Wang, J.L., Gong, J.C., Liu, S.Q., Le, G.M., Han, Y.B., Sun, J.L.: 2002, Verification of a similar cycle prediction for the ascending and peak phases of solar cycle 23. Chin. J. Astron. Astrophys. 2, 396. DOI.

    Article  ADS  Google Scholar 

  • Wang, J.L., Zong, W.G., Le, G.M., Zhao, H.J., Tang, Y.T., Zhang, Y.: 2009, Predicting the start and maximum amplitude of solar cycle 24 using similar phases and a cycle grouping. Res. Astron. Astrophys. 9, 133. DOI.

    Article  ADS  Google Scholar 

  • Wilson, R.M., Hathaway, D.H., Reichmann, E.J.: 1998, An estimate for the size of cycle 23 based on near minimum conditions. J. Geophys. Res. 103, 6595. DOI.

    Article  ADS  Google Scholar 

  • Yoshida, A.: 2014, Difference between even- and odd-numbered cycles in the predictability of solar activity and prediction of the amplitude of cycle 25. Ann. Geophys. 32, 1035. DOI.

    Article  ADS  Google Scholar 

  • Yoshida, A., Yamagishi, H.: 2010, Predicting amplitude of solar cycle 24 based on a new precursor method. Ann. Geophys. 28, 417. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewer for valuable suggestions, which improved the quality of this manuscript. This work is supported by the National Science Foundation of China (NSFC) through grants 11973058 and 11603040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanle Du.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z. Predicting the Shape of Solar Cycle 25 Using a Similar-Cycle Method. Sol Phys 295, 134 (2020). https://doi.org/10.1007/s11207-020-01701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01701-4

Keywords

Navigation