Skip to main content
Log in

Development of a Method for Determining the Search Window for Solar Flare Neutrinos

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Neutrinos generated during solar flares remain elusive. However, after 50 years of discussion and search, the potential knowledge unleashed by their discovery keeps the search crucial. Neutrinos associated with solar flares provide information on otherwise poorly known particle acceleration mechanisms during a solar flare. For neutrino detectors, the separation between atmospheric neutrinos and solar flare neutrinos is technically encumbered by an energy band overlap. To improve differentiation from background neutrinos, we developed a method to determine the temporal search window for neutrino production during solar flares. Our method is based on data recorded by solar satellites, such as the Geostationary Operational Environmental Satellite (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and GEOTAIL. In this study, we selected 23 solar flares above X5.0 class that occurred between 1996 and 2018. We analyzed the light curves of soft X-rays, hard X-rays, \(\gamma \)-rays, line \(\gamma \)-rays from neutron capture as well as the derivative of soft X-rays. The average search windows are determined as follows: 4178 s for soft X-ray, 700 s for the derivative of soft X-ray, 944 s for hard X-ray (100 – 800 keV), \(1{,}586\) s for line \(\gamma \)-ray from neutron captures, and 776 s for hard X-ray (above 50 keV). This method allows neutrino detectors to improve their sensitivity to solar flare neutrinos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Aartsen, M.G., Ackermann, M., Adams, J., Aguilar, J.A., Ahlers, M., Ahrens, M., Altmann, D., Anderson, T., Anton, G., Arguelles, C., et al.: 2014, IceCube-Gen2: a vision for the future of neutrino astronomy in Antarctica. ADS. arXiv.

  • Aartsen, M.G., Ackermann, M., Adams, J., Aguilar, J.A., Ahlers, M., Ahrens, M., Altmann, D., Andeen, K., Anderson, T., Ansseau, I., et al.: 2017, The IceCube Neutrino Observatory: instrumentation and online systems. J. Instrum. 12, P03012. DOI. ADS.

    Article  Google Scholar 

  • Abe, K., Abe, K.E., Aihara, H., Aimi, A., Akutsu, R., Andreopoulos, C., Anghel, I., Anthony, L.H.V., Antonova, M., Ashida, Y., et al.: 2018, Hyper-Kamiokande design report. ADS. arXiv.

  • Acciarri, R., Acero, M.A., Adamowski, M., Adams, C., Adamson, P., Adhikari, S., Ahmad, Z., Albright, C.H., Alion, T., Amador, E., et al.: 2015, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) conceptual design report, Vol. 2: The Physics Program for DUNE at LBNF. ADS. arXiv.

  • Ackermann, M., Allafort, A., Baldini, L., Barbiellini, G., Bastieri, D., Bellazzini, R., Bissaldi, E., Bonino, R., Bottacini, E., Bregeon, J., et al.: 2017, Fermi-LAT observations of high-energy behind-the-limb solar flares. Astrophys. J. 835, 219. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ageron, M., Aguilar, J.A., Samarai, I.A., Albert, A., Ameli, F., Andre, M., Anghinolfi, M., Anton, G., Anvar, S., Ardid, M., et al.: 2011, ANTARES: the first undersea neutrino telescope. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 656, 11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Agostini, M., Altenmuller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., Bellini, G., Benziger, J., Bick, D., Bonfini, G., et al.: 2019, Search for low-energy neutrinos from astrophysical sources with Borexino. ADS. arXiv.

  • Aharmim, B., Ahmed, S.N., Anthony, A.E., Barros, N., Beier, E.W., Bellerive, A., Beltran, B., Bergevin, M., Biller, S.D., Boudjemline, K., et al.: 2014, A search for astrophysical burst signals at the Sudbury Neutrino Observatory. Astropart. Phys. 55, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Alimonti, G., Arpesella, C., Back, H., Balata, M., Bartolomei, D., de Bellefon, A., Bellini, G., Benziger, J., Bevilacqua, A., Bondi, D., et al.: 2009, The Borexino detector at the Laboratori Nazionali del Gran Sasso. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 600, 568. DOI. ADS.

    Article  ADS  Google Scholar 

  • An, F., An, G., An, Q., Antonelli, V., Baussan, E., Beacom, J., Bezrukov, L., Blyth, S., Brugnera, R., Avanzini, M.B., et al.: 2016, Neutrino physics with JUNO. J. Phys. G, Nucl. Part. Phys. 43, 030401. DOI. ADS.

    Article  ADS  Google Scholar 

  • Andringa, S., Arushanova, E., Asahi, S., Askins, M., Auty, D.J., Back, A.R., Barnard, Z., Barros, N., Beier, E.W., Bialek, A., et al.: 2016, Current status and future prospects of the SNO+ experiment. Adv. High Energy Phys. 2016, 1. DOI. ADS.

    Article  Google Scholar 

  • Aptekar, R.L., Frederiks, D.D., Golenetskii, S.V., Ilynskii, V.N., Mazets, E.P., Panov, V.N., Sokolova, Z.J., Terekhov, M.M., Sheshin, L.O., Cline, T.L., Stilwell, D.E.: 1995, Konus-W gamma-ray burst experiment for the GGS wind spacecraft. Space Sci. Rev. 71, 265. ADS.

    Article  ADS  Google Scholar 

  • Atwood, W.B., Abdo, A.A., Ackermann, M., Althouse, W., Anderson, B., Axelsson, M., Baldini, L., Ballet, J., Band, D.L., Barbiellini, G., et al.: 2009, The Large Area Telescope on the Fermi Gamma-ray Space Telescope mission. Astrophys. J. 697, 1071. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bahcall, J.N.: 1988, Solar flares and neutrino detectors. Phys. Rev. Lett. 61, 2650. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bahcall, J.N., Field, G.B., Press, W.H.: 1987, Is solar neutrino capture rate correlated with sunspot number? Astrophys. J. Lett. 320, L69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Boger, J., Hahn, R.L., Rowley, J.K., Carter, A.L., Hollebone, B., Kessler, D., Blevis, I., Dalnoki-Veress, F., DeKok, A., Farine, J., et al.: 2000, The Sudbury Neutrino Observatory. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 449, 172. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bohlin, J.D., Frost, K.J., Burr, P.T., Guha, A.K., Withbroe, G.L.: 1980, Solar Maximum Mission. Solar Phys. 65, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Boyarkin, O.M.: 1996, Solar neutrino problem within the left–right model. Phys. Rev. D, Part. Fields 53, 5298. DOI. ADS.

    Article  ADS  Google Scholar 

  • Boyarkin, O.M., Boyarkina, G.G.: 2016, Influence of solar flares on behavior of solar neutrino flux. Astropart. Phys. 85, 39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chupp, E.L., Forrest, D.J., Higbie, P.R., Suri, A.N., Tsai, C., Dunphy, P.P.: 1973, Solar gamma ray lines observed during the solar activity of August 2 to August 11, 1972. Nature 241, 333. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cisneros, A.: 1971, Effect of neutrino magnetic moment on solar neutrino observations. Astrophys. Space Sci. 10, 87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Datlowe, D.W., Elcan, M.J., Hudson, H.S.: 1974a, OSO-7 observations of solar x-rays in the energy range 10–100 keV. Solar Phys. 39, 155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Datlowe, D.W., Hudson, H.S., Peterson, L.E.: 1974b, Observations of solar X-ray bursts in the energy range 5–15 keV. Solar Phys. 35, 193. DOI. ADS.

    Article  ADS  Google Scholar 

  • Davis, R.: 1994, A review of the homestake solar neutrino experiment. Prog. Part. Nucl. Phys. 32, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • de Wasseige, G.: 2016, On the study of solar flares with neutrino observatories. ADS. arXiv.

  • Drake, J.F. Sr., Gibson, J., van Allan, J.A.: 1969, Iowa catalog of solar X-ray flux (2–12 Å). Solar Phys. 10, 433. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ellison, M.A.: 1963, Solar flares, energy release in. Q. J. Roy. Astron. Soc. 4, 62. ADS.

    ADS  Google Scholar 

  • Enome, S.: 1982, HINOTORI – a Japanese satellite for solar flare studies. Adv. Space Res. 2, 201. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fargion, D.: 2004, Detecting solar neutrino flares and flavors. J. High Energy Phys. 2004, 045. DOI. ADS.

    Article  Google Scholar 

  • Fargion, D., Moscato, F.: 2003, Muon and tau neutrinos spectra from solar flares. Chin. J. Astron. Astrophys. 3, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feldman, U., Doschek, G.A., Behring, W.E., Phillips, K.J.H.: 1996, Electron temperature, emission measure, and X-ray flux in A2 to X2 X-ray class solar flares. Astrophys. J. 460, 1034. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fletcher, L., Dennis, B R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19. DOI.

    Article  ADS  Google Scholar 

  • Fukuda, S., Fukuda, Y., Hayakawa, T., Ichihara, E., Ishitsuka, M., Itow, Y., Kajita, T., Kameda, J., Kaneyuki, K., Kasuga, S., et al.: 2003, The Super-Kamiokande detector. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 501, 418. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gan, W.Q.: 1998, Spectral evolution of energetic protons in solar flares. Astrophys. J. 496, 992. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gando, A., Gando, Y., Ichimura, K., Ikeda, H., Inoue, K., Kibe, Y., Kishimoto, Y., Koga, M., Minekawa, Y., et al.: 2012, Search for extraterrestrial antineutrino sources with the KamLAND detector. Astrophys. J. 745, 193. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hanser, F.A., Sellers, F.B.: 1996, In: Washwell, E.R. (ed.) Design and Calibration of the GOES-8 Solar X-Ray Sensor: The XRS, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 2812, 344. DOI. ADS.

    Chapter  Google Scholar 

  • Heckman, G., Speich, D., Hirman, J., DeFoor, T.: 1996, In: Washwell, E.R. (ed.) NOAA Space Environment Center Mission and the GOES Space Environment Monitoring Subsystem, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 2812, 274. DOI. ADS.

    Chapter  Google Scholar 

  • Hirata, K.S., Kajita, T., Kifune, T., Kihara, K., Nakahata, M., Nakamura, K., Ohara, S., Oyama, Y., Sato, N., Takita, M., et al.: 1988, Search for correlation of neutrino events with solar flares in Kamiokande. Phys. Rev. Lett. 61, 2653. DOI. ADS.

    Article  ADS  Google Scholar 

  • Holman, G.D., Aschwanden, M.J., Aurass, H., Battaglia, M., Grigis, P.C., Kontar, E.P., Liu, W., Saint-Hilaire, P., Zharkova, V.V.: 2011, Implications of x-ray observations for electron acceleration and propagation in solar flares. Space Sci. Rev. 159, 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hudson, H., Ryan, J.: 1995, High-energy particles in solar flares. Annu. Rev. Astron. Astrophys. 33, 239. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., Dennis, B.R., Johns-Krull, C., Krucker, S., Lin, R.P., et al.: 2002, The RHESSI imaging concept. Solar Phys. 210, 61. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kane, S.R.: 1974, In: Newkirk, G. (ed.) Impulsive (Flash) Phase of Solar Flares: Hard X-Ray, Microwave, EUV and Optical Observations, 105. ADS.

    Google Scholar 

  • Kane, S.R., McTiernan, J.M., Hurley, K.: 2005, Multispacecraft observations of the hard X-ray emission from the giant solar flare on 2003 November 4. Astron. Astrophys. 433, 1133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kane, S.R., Kai, K., Kosugi, T., Enome, S., Land ecker, P.B., McKenzie, D.L.: 1983, Acceleration and confinement of energetic particles in the 1980 June 7 solar flare. Astrophys. J. 271, 376. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Kosugi, T.: 2004, Acceleration and heating processes in a collapsing magnetic trap. Astron. Astrophys. 419, 1159. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kocharov, G.E., Kovaltsov, G.A., Usoskin, I.G.: 1991, Solar flare neutrinos. Nuovo Cimento C 14, 417. DOI.

    Article  ADS  Google Scholar 

  • Kontar, E.P., Brown, J.C., Emslie, A.G., Hajdas, W., Holman, G.D., Hurford, G.J., Kašparová, J., Mallik, P.C.V., Massone, A.M., McConnell, M.L., Piana, M., Prato, M., Schmahl, E.J., Suarez-Garcia, E.: 2011, Deducing electron properties from hard X-ray observations. Space Sci. Rev. 159, 301. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosugi, T., Makishima, K., Murakami, T., Sakao, T., Dotani, T., Inda, M., Kai, K., Masuda, S., Nakajima, H., Ogawara, Y., et al.: 1991, The Hard X-ray Telescope (HXT) for the SOLAR-A mission. Solar Phys. 136, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., et al.: 2007, The Hinode (Solar-B) mission: an overview. Solar Phys. 243, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krucker, S., Christe, S., Glesener, L., Ishikawa, S.-n., Ramsey, B., Takahashi, T., Watanabe, S., Saito, S., Gubarev, M., Kilaru, K., et al.: 2014, First images from the focusing optics X-ray solar imager. Astrophys. J. Lett. 793, L32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kurt, V., Yushkov, B., Grechnev, V.: 2013, The onset time of the pion-decay gamma-ray emission of major solar flares. In: Proceedings for ICRC 2011 10, 6. DOI. https://galprop.stanford.edu/elibrary/icrc/2011/papers/SH1.1/icrc0287.pdf.

    Chapter  Google Scholar 

  • Kurt, V.G., Yushkov, B.Y., Kudela, K., Galkin, V.I.: 2010, High-energy gamma radiation of solar flares as an indicator of acceleration of energetic protons. Cosm. Res. 48, 70. DOI.

    Article  ADS  Google Scholar 

  • Kurt, V.G., Yushkov, B.Y., Galkin, V.I., Kudela, K., Kashapova, L.K.: 2017, Coronas-f observation of gamma-ray emission from the solar flare on 2003 October 29. New Astron. 56, 102. DOI. http://www.sciencedirect.com/science/article/pii/S1384107617300519.

    Article  ADS  Google Scholar 

  • Kuznetsov, S.N., Kurt, V.G., Yushkov, B.Y., Kudela, K., Galkin, V.I.: 2011, Gamma-ray and high-energy-neutron measurements on CORONAS-F during the solar flare of 28 October 2003. Solar Phys. 268, 175. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., Petrosian, V., Dennis, B.R., Jiang, Y.W.: 2008, Double coronal hard and soft X-ray source observed by RHESSI: evidence for magnetic reconnection and particle acceleration in solar flares. Astrophys. J. 676, 704. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., Petrosian, V., Dennis, B.R, Holman, G.D.: 2009, Conjugate hard X-ray footpoints in the 2003 October 29 X10 flare: unshearing motions, correlations, and asymmetries. Astrophys. J. 693, 847. DOI. ADS.

    Article  ADS  Google Scholar 

  • Massa, P., Piana, M., Massone, A.M., Benvenuto, F.: 2019, Count-based imaging model for the Spectrometer/Telescope for Imaging X-rays (STIX) in solar orbiter. Astron. Astrophys. 624, A130. DOI. ADS.

    Article  ADS  Google Scholar 

  • Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., Ogawara, Y.: 1994, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mukai, T., Machida, S., Saito, Y., Hirahara, M., Terasawa, T., Kaya, N., Obara, T., Ejiri, M., Nishida, A.: 1994, The Low Energy Particle (LEP) experiment onboard the GEOTAIL satellite. J. Geomagn. Geoelectr. 46, 669. DOI.

    Article  ADS  Google Scholar 

  • Müller, D., Marsden, R.G., St. Cyr, O.C., Gilbert, H.R., (The Solar Orbiter Team): 2013, Solar orbiter. Solar Phys. 285, 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Neupert, W.M.: 1968, Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. Lett. 153, L59. DOI. ADS.

    Article  ADS  Google Scholar 

  • Okun, L.B., Voloshin, M.B., Vysotsky, M.I.: 1986, Neutrino electrodynamics and possible effects for solar neutrinos. Sov. Phys. JETP 64, 446. ADS.

    Google Scholar 

  • Omodei, N., Pesce-Rollins, M., Longo, F., Allafort, A., Krucker, S.: 2018, Fermi-LAT observations of the 2017 September 10 solar flare. Astrophys. J. 865, L7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1957, Sweet’s mechanism for merging magnetic fields in vonducting fluids. J. Geophys. Res. 62, 509. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ramaty, R., Kozlovsky, B., Lingenfelter, R.E.: 1975, Solar gamma rays. Space Sci. Rev. 18, 341. DOI.

    Article  ADS  Google Scholar 

  • Richard, E., Okumura, K., Abe, K., Haga, Y., Hayato, Y., Ikeda, M., Iyogi, K., Kameda, J., Kishimoto, Y., Miura, M., et al.: 2016, Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation. Phys. Rev. D, Part. Fields 94, 052001. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shih, A.Y., Lin, R.P., Smith, D.M.: 2009, Rhessiobservations of the proportional acceleration of relativistic >0.3 MeV electrons and >30 MeV protons in solar flares. Astrophys. J. 698, L152. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shimizu, T.: 1995, Energetics and occurrence rate of active-region transient brightenings and implications for the heating of the active-region corona. Publ. Astron. Soc. Japan 47, 251. ADS.

    ADS  Google Scholar 

  • Smith, D.M., Share, G.H., Murphy, R.J., Schwartz, R.A., Shih, A.Y., Lin, R.P.: 2003, High-resolution spectroscopy of gamma-ray lines from the X-class solar flare of 2002 July 23. Astrophys. J. 595, L81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Takeishi, R., Toshio, T., Kotoku, J.: 2013, Numerical studies of neutrino radiation in solar flares. In: Proceedings, 33rd International Cosmic Ray Conference, ICRC2013, Rio de Janeiro, Brazil, July 2–9, 2013, 0889. http://inspirehep.net/record/1413031/files/icrc2013-0889.pdf.

    Google Scholar 

  • Tanaka, Y.T., Terasawa, T., Kawai, N., Yoshida, A., Yoshikawa, I., Saito, Y., Takashima, T., Mukai, T.: 2007a, Comparative study of the initial spikes of soft gamma-ray repeater giant flares in 1998 and 2004 observed with Geotail: do magnetospheric instabilities trigger large-scale fracturing of a magnetar’s crust? Astrophys. J. 665, L55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tanaka, Y.T., Yoshikawa, I., Yoshioka, K., Terasawa, T., Saito, Y., Mukai, T.: 2007b, Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite. Rev. Sci. Instrum. 78, 034501. DOI. ADS.

    Article  ADS  Google Scholar 

  • Terasawa, T., Tanaka, Y.T., Takei, Y., Kawai, N., Yoshida, A., Nomoto, K., Yoshikawa, I., Saito, Y., Kasaba, Y., Takashima, T., et al.: 2005, Repeated injections of energy in the first 600 ms of the giant flare of SGR1806-20. Nature 434, 1110. DOI. ADS.

    Article  ADS  Google Scholar 

  • Trottet, G., Schwartz, R.A., Hurley, K., McTiernan, J.M., Kane, S.R., Vilmer, N.: 2003, Stereoscopic observations of the giant hard X-ray/gamma-ray solar flare on 1991 June 30 at 0255 UT. Astron. Astrophys. 403, 1157. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsuneta, S., Naito, T.: 1998, Fermi acceleration at the fast shock in a solar flare and the impulsive loop-top hard X-ray source. Astrophys. J. 495, L67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Veronig, A., Vrsnak, B., Dennis, B.R., Temmer, M., Hanslmeier, A., Magdalenić, J.: 2002, Investigation of the Neupert effect in solar flares – I. Statistical properties and the evaporation model. Astron. Astrophys. 392, 699. DOI. ADS.

    Article  ADS  Google Scholar 

  • Veronig, A.M., Brown, J.C., Dennis, B.R., Schwartz, R.A., Sui, L., Tolbert, A.K.: 2005, Physics of the Neupert Effect: estimates of the effects of source energy, mass transport, and geometry using RHESSI and GOES data. Astrophys. J. 621, 482. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wilson, R.M.: 2000, Correlative aspects of the solar electron neutrino flux and solar activity. Astrophys. J. 545, 532. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wurm, M., Beacom, J.F., Bezrukov, L.B., Bick, D., Blumer, J., Choubey, S., Ciemniak, C., D’Angelo, D., Dasgupta, B., Derbin, A., et al.: 2012, The next-generation liquid-scintillator neutrino observatory LENA. Astropart. Phys. 35, 685. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was carried out by the joint research program of the Institute for Space-Earth Environmental Research (ISEE), Nagoya University. A part of this study was carried using the computational resources of the Center for Integrated Data Science, Institute for Space-Earth Environmental Research, Nagoya University, through the joint research program. We thank Y. Saito from JAXA and I. Shinohara from JAXA for reproducing GEOTAIL satellite data. We thank S. Krucker for his careful reading of this manuscript and for his insightful comments and suggestions. This work is supported by MEXT KAKENHI Grant Numbers 17K17880, 18H05536, 18J00049 and 19J21344.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Okamoto or Y. Nakano.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Line \(\gamma \)-ray Light Curves for Solar Flares

As mentioned in Section 2, the observation of \(\gamma \)-rays indicates the production of neutrinos via hadronic interactions, thus constituting the most important channel in this analysis. The present study captures four solar flares that include line \(\gamma \)-rays. In the main text, light curves for the solar flare occurring on November 2, 2003 are shown, because all channels are available for this event. Light curves of the other three flares are shown as follows: July 23, 2002 (Figure 10), October 29, 2003 (Figure 11), and January 20, 2005 (Figure 12).

Figure 11
figure 11

Light curves of the solar flare occurring on October 29, 2003. Gray bands show the search windows as same in Figure 5. The vertical dotted lines show the peak timing for each channel. As described in the appendix text, both hard X-ray and line \(\gamma \)-ray are not used to determine the time window since their light curves were contaminated. The solid black line on third panel from top shows hard X-ray light curve using imaging method. The solid black line on fourth panel from top shows time profile of line \(\gamma \)-ray flux which is the same as Figure 6(c) in Kurt et al. (2017).

Figure 12
figure 12

Light curves of the solar flare occurred on January 20, 2005. Gray bands show the search windows as same in Figure 5. The vertical dotted lines show the peak timing for each channel.

Appendix B: Comment on the Solar Flare Occurring on October 29, 2003

The time profile of the flare occurring on October 29, 2003 is not similar to those of the other flares, because signal is contaminated with non-solar hard X-rays of magnetospheric origin. For only this flare, the peak timings of both hard X-rays and line \(\gamma \)-rays are delayed relative to that of soft X-ray as shown in Figure 11. The light curve of hard X-rays shows several minor peaks. To confirm the contamination was caused by non-solar-flare origin signal, we used spatial information from the imaging method to see the flare region on the surface of the Sun. The light curve with imaging method is shown in the third panel of Figure 11. The line \(\gamma \)-ray light curves shown in Kurt et al. (2017) is overlaid in the fourth panel of Figure 11.

Appendix C: Light Curves for the Largest Solar Flare; November 4, 2003

The largest solar flare on record occurred on November 4, 2003, with class X28.0. This flare attracts significant attention because of the presumably chance of solar-flare neutrino detection. Figure 13 shows the light curves for this solar flare.

Figure 13
figure 13

Light curves of the solar flare occurring on November 4, 2003. Gray bands show the search windows as same in Figure 5. The vertical dotted lines show the peak timing for each channel. Because of high intensity, the soft X-ray flux was saturated.

The GOES satellite instrument was saturated due to the high intensity of soft X-rays, and did not continue to record data for more than 15 min around 19:45–20:00. Because of this situation, we set the peak timing of soft X-ray for this flare at the middle point of the saturation phase, instead of the way outlined in the body of this paper. On the other hand, we could not set the peak timing of the derivative of soft X-rays due to the saturation. For this reason, we excluded this flare from comparison of peak timing with soft X-rays shown in Figure 8. Moreover, we used a special treatment to set the end time of the derivative of soft X-rays at the end time of the saturation of soft X-rays.

Unfortunately, the RHESSI satellite did not record data related to this solar flare because it entered the Earth’s shadow soon after the flare occurred.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, K., Nakano, Y., Masuda, S. et al. Development of a Method for Determining the Search Window for Solar Flare Neutrinos. Sol Phys 295, 133 (2020). https://doi.org/10.1007/s11207-020-01706-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01706-z

Keywords

Navigation