Skip to main content
Log in

An evolutionary autoencoder for dynamic community detection

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Dynamic community detection is significant for controlling and capturing the temporal features of networks. The evolutionary clustering framework provides a temporal smoothness constraint for simultaneously maximizing the clustering quality at the current time step and minimizing the clustering deviation between two successive time steps. Based on this framework, some existing methods, such as the evolutionary spectral clustering and evolutionary nonnegative matrix factorization, aim to look for the low-dimensional representation by mapping reconstruction. However, such reconstruction does not address the nonlinear characteristics of networks. In this paper, we propose a semi-supervised algorithm (sE-Autoencoder) to overcome the effects of nonlinear property on the low-dimensional representation. Our proposed method extends the typical nonlinear reconstruction model to the dynamic network by constructing a temporal matrix. More specifically, the potential community characteristics and the previous clustering, as the prior information, are incorporated into the loss function as a regularization term. Experimental results on synthetic and real-world datasets demonstrate that the proposed method is effective and superior to other methods for dynamic community detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li A, Cornelius S P, Liu Y Y, et al. The fundamental advantages of temporal networks. Science, 2017, 358: 1042–1046

    Article  Google Scholar 

  2. Cao J, Bu Z, Wang Y Y, et al. Detecting prosumer-community groups in smart grids from the multiagent perspective. IEEE Trans Syst Man Cybern Syst, 2019, 49: 1652–1664

    Article  Google Scholar 

  3. Gosak M, Markovič R, Dolenšek J, et al. Network science of biological systems at different scales: a review. Phys Life Rev, 2018, 24: 118–135

    Article  Google Scholar 

  4. Li X H, Kurths J, Gao C, et al. A hybrid algorithm for estimating origin-destination flows. IEEE Access, 2018, 6: 677–687

    Article  Google Scholar 

  5. Jalili M, Perc M. Information cascades in complex networks. J Complex Netw, 2017, 5: 665–693

    MathSciNet  Google Scholar 

  6. Pesantez-Cabrera P, Kalyanaraman A. Efficient detection of communities in biological bipartite networks. IEEE/ACM Trans Comput Biol Bioinf, 2019, 16: 258–271

    Article  Google Scholar 

  7. Yamir M, Matjaz P. Focus on multilayer networks. New J Phys, 2020, 22: 010201

    Article  Google Scholar 

  8. Li X H, Wang Z, Gao C, et al. Reasoning human emotional responses from large-scale social and public media. Appl Math Comput, 2017, 310: 182–193

    MathSciNet  MATH  Google Scholar 

  9. Hajek B E, Wu Y H, Xu J M. Information limits for recovering a hidden community. IEEE Trans Inform Theor, 2017, 63: 4729–4745

    Article  MathSciNet  Google Scholar 

  10. Gao C, Liang M X, Li X H, et al. Network community detection based on the physarum-inspired computational framework. IEEE/ACM Trans Comput Biol Bioinf, 2018, 15: 1916–1928

    Article  Google Scholar 

  11. Zhu P C, Dai X F, Li X L, et al. Community detection in temporal networks via a spreading process. Europhys Lett, 2019, 126: 48001

    Article  Google Scholar 

  12. Gao C, Wang Z, Li X H, et al. PR-Index: using the h-Index and PageRank for determining true impact. Plos One, 2016, 11: e0161755

    Article  Google Scholar 

  13. Huttlin E L, Bruckner R J, Paulo J A, et al. Architecture of the human interactome defines protein communities and disease networks. Nature, 2017, 545: 505–509

    Article  Google Scholar 

  14. Helbing D, Brockmann D, Chadefaux T, et al. Saving human lives: what complexity science and information systems can contribute. J Stat Phys, 2015, 158: 735–781

    Article  MathSciNet  Google Scholar 

  15. Gao C, Liu J M. Network-based modeling for characterizing human collective behaviors during extreme events. IEEE Trans Syst Man Cybern Syst, 2017, 47: 171–183

    Article  Google Scholar 

  16. Rossetti G, Cazabet R. Community discovery in dynamic networks. ACM Comput Surv, 2018, 51: 1–37

    Article  Google Scholar 

  17. Tang L, Liu H, Zhang J P. Identifying evolving groups in dynamic multimode networks. IEEE Trans Knowl Data Eng, 2012, 24: 72–85

    Article  Google Scholar 

  18. Asur S, Parthasarathy S, Ucar D. An event-based framework for characterizing the evolutionary behavior of interaction graphs. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007. 913–921

  19. Chakrabarti D, Kumar R, Tomkins A. Evolutionary clustering. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006. 554–560

  20. Chi Y, Song X D, Zhou D Y, et al. On evolutionary spectral clustering. ACM Trans Knowl Discov Data, 2009, 3: 1–30

    Article  Google Scholar 

  21. Ma X K, Dong D. Evolutionary nonnegative matrix factorization algorithms for community detection in dynamic networks. IEEE Trans Knowl Data Eng, 2017, 29: 1045–1058

    Article  Google Scholar 

  22. Gerlach M, Peixoto T P, Altmann E G. A network approach to topic models. Sci Adv, 2018, 4: eaaq1360

    Article  Google Scholar 

  23. Peel L, Larremore D B, Clauset A. The ground truth about metadata and community detection in networks. Sci Adv, 2017, 3: e1602548

    Article  Google Scholar 

  24. Shao J M, Zhang Z, Yu Z J, et al. Community detection and link prediction via cluster driven low rank matrix completion. In: Proceedings of the International Joint Conference on Artificial Intelligence, 2019. 3382–3388

  25. Yang L, Cao X C, He D X, et al. Modularity based community detection with deep learning. In: Proceedings of the International Joint Conference on Artificial Intelligence, 2016. 2252–2258

  26. Yang L, Cao X C, Jin D, et al. A unified semi-supervised community detection framework using latent space graph regularization. IEEE Trans Cybern, 2015, 45: 2585–2598

    Article  Google Scholar 

  27. Akçay E. Collapse and rescue of cooperation in evolving dynamic networks. Nat Commun, 2018, 9: 2692

    Article  Google Scholar 

  28. Gao C, Chen Z P, Li X H, et al. Multiobjective discrete particle swarm optimization for community detection in dynamic networks. Europhys Lett, 2018, 122: 28001

    Article  Google Scholar 

  29. Lin Y R, Chi Y, Zhu S H, et al. Analyzing communities and their evolutions in dynamic social networks. ACM Trans Knowl Discov Data, 2009, 3: 1–31

    Article  Google Scholar 

  30. Kim M S, Han J. A particle-and-density based evolutionary clustering method for dynamic networks. Proc VLDB Endow, 2009, 2: 622–633

    Article  Google Scholar 

  31. Folino F, Pizzuti C. An evolutionary multiobjective approach for community discovery in dynamic networks. IEEE Trans Knowl Data Eng, 2014, 26: 1838–1852

    Article  Google Scholar 

  32. Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Computat, 2002, 6: 182–197

    Article  Google Scholar 

  33. de Jesús Rubio J, Angelov P, Pacheco J. Uniformly stable backpropagation algorithm to train a feedforward neural network. IEEE Trans Neural Netw, 2011, 22: 356–366

    Article  Google Scholar 

  34. Girvan M, Newman M E J. Community structure in social and biological networks. Proc Natl Acad Sci USA, 2002, 99: 7821–7826

    Article  MathSciNet  Google Scholar 

  35. Liu F C, Wu J, Xue S, et al. Detecting the evolving community structure in dynamic social networks. World Wide Web, 2020, 23: 715–733

    Article  Google Scholar 

  36. Greene D, Doyle D, Cunningham P. Tracking the evolution of communities in dynamic social networks. In: Proceedings of International Conference on Advances in Social Networks Analysis and Mining, 2010. 176–183

  37. Danon L, Díaz-Guilera A, Duch J, et al. Comparing community structure identification. J Stat Mech, 2005, 2005: P09008

    Article  Google Scholar 

  38. Newman M E J, Girvan M. Finding and evaluating community structure in networks. Phys Rev E, 2004, 69: 026113

    Article  Google Scholar 

  39. Li Z P, Zhang S H, Wang R S, et al. Quantitative function for community detection. Phys Rev E, 2008, 77: 036109

    Article  Google Scholar 

  40. Wang P Z, Gao L, Ma X K. Dynamic community detection based on network structural perturbation and topological similarity. J Stat Mech, 2017, 2017: 013401

    Article  MathSciNet  Google Scholar 

  41. Mucha P J, Richardson T, Macon K, et al. Community structure in time-dependent, multiscale, and multiplex networks. Science, 2010, 328: 876–878

    Article  MathSciNet  Google Scholar 

  42. Liu F C, Choi D, Xie L, et al. Global spectral clustering in dynamic networks. Proc Natl Acad Sci USA, 2018, 115: 927–932

    Article  MathSciNet  Google Scholar 

  43. Wang C Y, Deng Y, Li X H, et al. A label-based nature heuristic algorithm for dynamic community detection. In: Proceedings of Pacific Rim International Conference on Artificial Intelligence, 2019. 621–632

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. U1803263, 6197618, 11931015, 81961138010) and Natural Science Foundation of Chongqing (Grant Nos. cstc2018jcyjAX0274, cstc2019-jcyj-zdxmX0025), Key Area R&D Program of Guangdong Province (Grant No. 2019B010137004), Key Area R&D Program of Shaanxi Province (Grant No. 2019ZDLGY17-07), and the Fundamental Research Funds for the Central Universities (Grant No. 3102019PJ006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuelong Li or Xianghua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, C., Gao, C. et al. An evolutionary autoencoder for dynamic community detection. Sci. China Inf. Sci. 63, 212205 (2020). https://doi.org/10.1007/s11432-020-2827-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2827-9

Keywords

Navigation