Skip to main content
Log in

Enhancement of mechanical entanglement in hybrid optomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a theoretical scheme for the enhancement of entanglement between the two distant mechanical resonators in a hybrid optomechanical system which is composed of a single-mode optomechanical cavity with an atomic ensemble of two-level atoms and two mechanical resonators coupled via Coulomb field. Our results show that the atomic detuning, collective atomic coupling and Coulomb interaction play a vital role in obtaining the enhanced entanglement between the two distant mechanical resonators. We can interplay these controlling parameters to obtain optimal entanglement for the system. Interestingly, the numerical simulation result reveals that such bi-partite entanglement persists for bath temperature up to 600 K. In the end, we show that the system’s interaction with the atomic ensemble lead to an enhanced entanglement spectrum, which is robust against bath temperature as well. The present scheme will open new perspectives in constructing entanglement between two distant resonators and helpful to realize quantum memories for the continuous-variable quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 823 (1935)

    ADS  MATH  Google Scholar 

  2. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)

    ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Deak, L., Fulop, T.: Reciprocity in quantum, electromagnetic and other wave scattering. Ann. Phys. 327, 1050 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Wang, X., Qiu, L., Li, S., Zhang, C., Ye, B.: Relating quantum discard with the quantum dense coding capacity. JETP 9, 120 (2015)

    Google Scholar 

  7. Vitali, D., Gigan, S., Ferreira, A., Böhm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    ADS  Google Scholar 

  8. Mari, A., Eisert, J.: Gently modulating optomechanical systems. Phys. Rev. Lett. 103, 213603 (2009)

    ADS  Google Scholar 

  9. Zhou, L., Ma, Y,H.: Enhanced entanglement between a movable mirror and a cavity field assisted by two-level atoms. J. Appl. Phys. 111, 103109 (2012)

    ADS  Google Scholar 

  10. Wang, Y.D., Clerk, A.A.: Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013)

    ADS  Google Scholar 

  11. Tan, H., Li, G., Myestre, P.: Dissipation-driven two-mode mechanical squeezed states in optomechanical systems. Phys. Rev. A 87, 033829 (2013)

    ADS  Google Scholar 

  12. Woolley, M.J., Clerk, A.A.: Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir. Phys. Rev. A 89, 063805 (2014)

    ADS  Google Scholar 

  13. Amjad, Sohail, Rizwan, Ahmed, Chang-Shui, Yu., Tariq, Munir: Enhanced entanglement induced by Coulomb interaction in coupled optomechanical systems. Phys. Scr. 95, 035108 (2020)

    Google Scholar 

  14. Pinard, Inard M., Dantan, A., Vitali, D., Arcizet, O., Briant, T., Heidann, A.: Entangling movable mirrors in a double-cavity system. Europhys. Lett. 72, 747 (2005)

    ADS  Google Scholar 

  15. Huang, S., Agarwal, G.S.: Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light. New J. Phys. 11, 103044 (2009)

    ADS  Google Scholar 

  16. Ahmed, R., Qamar, S.: Optomechanical entanglement via non-degenerate parametric interactions. Phys. Scr. 92, 105101 (2017)

    ADS  Google Scholar 

  17. Ahmed, R., Qamar, S.: Effects of laser phase noise on optomechanical entanglement in the presence of a nonlinear Kerr downconverter. Phys. Scr. 94, 085102 (2019)

    ADS  Google Scholar 

  18. Zhang, J., Peng, K., Braunstein, S.L.: Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003)

    ADS  Google Scholar 

  19. Hartmann, M.J., Plenio, M.B.: Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101, 200503 (2008)

    ADS  Google Scholar 

  20. Vitali, D., Manncini, S., Tombesi, P.: J. Stationary entanglement between two movable mirrors in a classically driven Fabry–Perot cavity. Phys. A 40, 8055 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)

    ADS  Google Scholar 

  22. Hedemann, S.R.V., Clader, B.D.: Optomechanical entanglement of remote microwave cavities. Opt. Soc. Am. 35, 2509 (2018)

    ADS  Google Scholar 

  23. Pirandola, S., Vitali, D., Tombesi, P., Lloyd, S.: Macroscopic entanglement by entanglement swapping. Phys. Rev. Lett. 97, 150403 (2006)

    ADS  Google Scholar 

  24. Börkge, K., Nunnenkamp, A., Girvin, S.M.: Proposal for entangling remote micromechanical oscillators via optical measurements. Phys. Rev. Lett. 107, 123601 (2011)

    ADS  Google Scholar 

  25. Joshi, C., Larson, J., Jonson, M., Andersson, E., Ohberg, P.: Entanglement of distant optomechanical systems. Phys. Rev. A 85, 033805 (2012)

    ADS  Google Scholar 

  26. Chen, R.X., Shen, L.T., Zheng, S.B.: Dissipation-induced optomechanical entanglement with the assistance of Coulomb interaction. Phys. Rev. A. 91, 022326 (2015)

    ADS  Google Scholar 

  27. Bai, C.H., Wang, D.Y., Wang, H.F., Zhu, A.D., Zhang, S.: Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction. Sc. Rep. 7, 2545 (2017)

    ADS  Google Scholar 

  28. Chen, A., et al.: Steady-state entanglement in levitated optomechanical systems coupled to a higher order excited atomic ensemble. J. Optcom. 6, 103 (2017)

    Google Scholar 

  29. Xihua, Yang, et al.: Enhanced multipartite entanglement via quantum coherence with an atom-assisted optomechanical system. J. Phys. B At. Mol. Opt. Phys. 51, 205501 (2018)

    ADS  Google Scholar 

  30. Shao, Xuping, Yin, Zhiyong, Li, Zhenghong, Yang, Xihua: Enhanced tripartite entanglement via atomic coherence in atom-optomechanical system. Eur. Phys. J. D 73, 247 (2019)

    ADS  Google Scholar 

  31. Khazali, M.: Progress towards macroscopic spin and mechanical superposition via rydberg interaction. Phys. Rev. A 98, 043836 (2018)

    ADS  Google Scholar 

  32. Bai, C.H., Wang, D.Y., Wang, H.F., Zhu, A.D., Zhang, S.: Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system. Sci. Rep. 6, 33404 (2016)

    ADS  Google Scholar 

  33. Bariani, F., Otterbach, J., Tan, H., Meystre, P.: Single-atom quantum control of macroscopic mechanical oscillators. Phys. Rev. A 89, 011801 (2014)

    ADS  Google Scholar 

  34. Zhou, L., Han, Y., Jing, J., Zhang, W.P.: Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence. Phys. Rev. A 83, 052117 (2011)

    ADS  Google Scholar 

  35. Low, U., Emery, V.J., Fabricius, K.: Study of an Ising model with competing long-and short-range interactions. Phys. Rev. Lett. 72, 1918 (1994)

    ADS  Google Scholar 

  36. Bohm, D., Pines, D.: A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609 (1953)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Zheng, S.B.: Generation of atomic and field squeezing by adiabatic passage and symmetry breaking. Phys. Rev. A 86, 013828 (2012)

    ADS  Google Scholar 

  38. Holstein, T., Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940)

    ADS  MATH  Google Scholar 

  39. Hammerer, K., Sørensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010)

    ADS  Google Scholar 

  40. Amjad, Sohail, Yang, Z., Bary, G., Yu, C.S.: Tunable optomechanically induced transparency and fano resonance in optomechanical system with levitated nanosphere. Int. J. Theor. Phys 57, 2814 (2018)

    MATH  Google Scholar 

  41. Ma, P.C., Zhang, J.Q., Xiao, Y., Feng, M., Zhang, Z.M.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A 90, 043825 (2014)

    ADS  Google Scholar 

  42. Nejad, A.A., Askari, H.R., Baghshahi, H.R.: Normal mode splitting in an optomechanical system: effects of Coulomb and parametric interactions. JOSA B. 35(9), 2237 (2018)

    ADS  Google Scholar 

  43. Amjad, Sohail, Zhang, Y., Usman, M., Chang-Shui, Yu.: Controllable optomechanically induced transparency in coupled optomechanical systems. Eur. Phys. J. D 71, 103 (2017)

    ADS  Google Scholar 

  44. Amjad, Sohail, Rzwan, Ahmed, Chang-Shui, Yu., Tariq, Munir, Fakhar-e-Alam: Tunable optical response of an optomechanical system with two mechanically driven resonators. Phys. Scr. 95, 045105 (2020)

    Google Scholar 

  45. Gardiner, C.W., Zoller, P.: Quantum Noise, 3rd edn. Springer, New York (2004)

    MATH  Google Scholar 

  46. Genesa, C., Marib, A., Vitalic, D., Tombesic, P.: Quantum effects in optomechanical systems. Adv. Atom. Mol. Opt. Phys. 57, 33 (2009)

    ADS  Google Scholar 

  47. Aspelmeyer, A., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  48. Adesso, G., Serafni, A., Illuminati, F.: Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A 70, 022318 (2004)

    ADS  Google Scholar 

  49. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    ADS  Google Scholar 

  50. Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)

    ADS  Google Scholar 

  51. Gigan, S., Böhm, H.R., Paternostro, M.: Long-term motor cortex plasticity induced by an electronic neural implant. Nature 57, 444 (2006)

    Google Scholar 

  52. Arcizet, O., et al.: Radiation-pressure cooling and optomechanical instability of a micromirror. Nature (London) 71, 444 (2006)

    Google Scholar 

  53. Lu, X,Y., Liao, J.Q., Tian, L., Nori, F.: Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Phys. Rev. A 91, 013834 (2015)

    ADS  Google Scholar 

  54. Qing, Lin, Bing, He, Min, Xiao: Entangling two macroscopic mechanical resonators at high temperature. Phys. Rev. Appl. 13, 034030 (2020)

    ADS  Google Scholar 

  55. Genes, C., Vitali, D., Tombesi, P.: Emergence of atom-light-mirror entanglement inside an optical cavity. Phys. Rev. A 77(R), 050307 (2008)

    ADS  Google Scholar 

  56. Li, J., Hou, B., Zhao, Y., Wei, L.: Enhanced entanglement between two movable mirrors in an optomechanical system with nonlinear media. Europhys. Lett. 110, 64004 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Sohail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Working principle of the covariance matrix

Appendix A. Working principle of the covariance matrix

The solution of Eq. (10) can be solved as following form

$$\begin{aligned} F(t)=\varrho (t)F(0)+ \int \limits _{0}^{t}\varrho (\tau )\varLambda (t-\tau )d\tau \end{aligned}$$
(18)

where \(\varrho (t)=e^{Mt}\). The initial condition for the above transformation \(\varrho (0)=I\), where I is Identity matrix. The Hamiltonian which corresponds to linearized quantum Langevin Eq. (9) guarantees that when the hybrid system is stable, it results into a Gaussian state whose information properties, such as entanglement, can be delineated by the symmetric \(8\times 8\) covariance matrix. The components of this covariance matrix can be defined as

$$\begin{aligned} V_{mn}=\frac{\left\langle F_{m}F_{n}+F_{n}F_{m}\right\rangle }{2} \end{aligned}$$
(19)

From Eqs. (10) and (19), one can easily obtain a linear differential equation for the hybrid system’s covariance matrix

$$\begin{aligned} \dot{V}=MV+VM^{T}+D, \end{aligned}$$
(20)

where D is a diffusion matrix. The components of D are associated with the noise correlation function Eq. (14)

$$\begin{aligned} D_{a,b}\delta (t-\acute{t})=\frac{\left\langle \varLambda _{a}(t)\varLambda _{b}( \acute{t})+\varLambda _{b}(\acute{t})\varLambda _{a}(t)\right\rangle }{2} \end{aligned}$$
(21)

From the above equation, it is easy to get that D is diagonal which is given in Eq. (13).

The covariance matrix V of the present hybrid optomechanical system is given by

$$\begin{aligned} V=\left( \begin{array}{cccc} V_{m_{L}} &{} V_{m_{L}m_{R}} &{} V_{m_{L}c} &{} V_{m_{L}a} \\ V_{m_{L}m_{R}}^{\dagger } &{} V_{m_{R}} &{} V_{m_{R}c} &{} V_{m_{R}a} \\ V_{m_{L}c}^{\dagger } &{} V_{m_{R}c}^{\dagger } &{} V_{c} &{} V_{ca} \\ V_{m_{L}a}^{\dagger } &{} V_{m_{R}a}^{\dagger } &{} V_{ca}^{\dagger } &{} V_{a} \end{array} \right) , \end{aligned}$$
(22)

where each element is a \(2 \times 2\) matrix. The diagonal elements \(V_{m_{L}}\),\(V_{m_{R}}\), \(V_{c}\) and \(V_{a}\) of the above covariance matrix V depict the local properties of the left mechanical mode, right mechanical mode, the cavity mode and the collective atomic mode, respectively, while the non-diagonal elements referring to the intermode correlations. For example, \(V_{m_{L}a}\) describe the left mechanical mode-atom correlation.

To compute the entanglement among different bi-partite subsystems of the hybrid optomechanical system, we have to reduce the original \(8\times 8\) covariance matrix V into a \(4\times 4\) submatrix \(V_{sub}\). If the indices m and n for the matrix element \(V_{mn}\) are restricted to the set \(\{1, 2, 3, 4\}\), the submatrix \(V_{sub}=[V_{mn}]\) can be formed by the first four columns and rows of the covariance matrix V. This corresponds to the covariance between the two mechanical modes. Similarly, if the indices m and n for the matrix element \(V_{mn}\) run over \(\{1, 2, 7, 8\}\), \(V_{sub}\) will describe the covariance matrix of the left mechanical mode and collective atomic mode. This is how the covariance matrix works.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohail, A., Rana, M., Ikram, S. et al. Enhancement of mechanical entanglement in hybrid optomechanical system. Quantum Inf Process 19, 372 (2020). https://doi.org/10.1007/s11128-020-02888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02888-y

Keywords

Navigation