Skip to main content
Log in

Distillability for non-full-rank coherent states in the probabilistic framework

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We adequately characterize the distillability of quantum coherence under the maximally incoherent operations (MIO) in the probabilistic distillation’s framework. In particular, we prove that every non-full-rank coherent state exhibits a nonzero probability in the task of probabilistic deterministic distillation. Moreover, we find that the maximal coherence, a computable coherence monotone under strictly incoherent operations (SIO), is a coherence monotone under incoherent operations (IO) and add the proof that the maximal coherence fulfills strong monotonicity under SIO. It is suggested that the maximal success probability of distillation from all coherent states whose density matrix does not contain any rank-one submatrix is less than 1 under IO and equals 0 under SIO. Finally, we present an explicit example for probabilistic distillation under IO and show that a class of non-full rank 3-dimensional states possesses the probabilistic distillability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aberg, J.: Quantifying superposition. arXiv preprint arXiv:quant-ph/0612146 (2006)

  2. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  3. Brandao, F.G.S.L., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115(7), 070503 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bu, K., Singh, U., Fei, S.M., et al.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119(15), 150405 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Chitambar, E., Gour, G.: Comparison of incoherent operations and measures of coherence. Phys. Rev. A 94(5), 052336 (2016)

    Article  ADS  Google Scholar 

  6. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117(3), 030401 (2016)

    Article  ADS  Google Scholar 

  7. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Modern Phys. 91(2), 025001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. De Vicente, J.I., Streltsov, A.: Genuine quantum coherence. J. Phys. A Math. Theor. 50(4), 045301 (2016)

    Article  MathSciNet  Google Scholar 

  9. Du, S., Bai, Z., Guo, Y.: Conditions for coherence transformations under incoherent operations. Phys. Rev. A 91(5), 052120 (2015)

    Article  ADS  Google Scholar 

  10. Fang, K., Wang, X., Lami, L., et al.: Probabilistic distillation of quantum coherence. Phys. Rev. Lett. 121(7), 070404 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  12. Hu, M.L., Hu, X., Wang, J., et al.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1–100 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Lami, L.: Completing the grand tour of asymptotic quantum coherence manipulation. IEEE Trans. Inf. Theory 66(4), 2165–2183 (2020). https://doi.org/10.1109/TIT.2019.2945798

    Article  MATH  Google Scholar 

  14. Lami, L., Regula, B., Adesso, G.: Generic bound coherence under strictly incoherent operations. Phys. Rev. Lett. 122(15), 150402 (2019)

    Article  ADS  Google Scholar 

  15. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16(3), 033007 (2014)

    Article  ADS  Google Scholar 

  16. Liu, C.L., Zhou, D.L.: Deterministic coherence distillation. Phys. Rev. Lett. 123(7), 070402 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Luo, Y., Li, Y., Hsieh, M.H.: Inequivalent multipartite coherence classes and two operational coherence monotones. Phys. Rev. A 99(4), 042306 (2019)

    Article  ADS  Google Scholar 

  18. Regula, B., Fang, K., Wang, X., et al.: One-shot coherence distillation. Phys. Rev. Lett. 121(1), 010401 (2018)

    Article  ADS  Google Scholar 

  19. Shao, L.H., Xi, Z., Fan, H., et al.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91(4), 042120 (2015)

    Article  ADS  Google Scholar 

  20. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89(4), 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Torun, G., Lami, L., Adesso, G., et al.: Optimal distillation of quantum coherence with reduced waste of resources. Phys. Rev. A 99(1), 012321 (2019)

    Article  ADS  Google Scholar 

  22. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116(12), 120404 (2016)

    Article  ADS  Google Scholar 

  23. Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  24. Yadin, B., Ma, J., Girolami, D., et al.: Quantum processes which do not use coherence. Phys. Rev. X 6(4), 041028 (2016)

    Google Scholar 

  25. Yu, X.D., Zhang, D.J., Xu, G.F., et al.: Alternative framework for quantifying coherence. Phys. Rev. A 94(6), 060302 (2016)

    Article  ADS  Google Scholar 

  26. Yuan, X., Zhou, H., Cao, Z., et al.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92(2), 022124 (2015)

    Article  ADS  Google Scholar 

  27. Zhao, Q., Liu, Y., Yuan, X., et al.: One-shot coherence dilution. Phys. Rev. Lett. 120(7), 070403 (2018)

    Article  ADS  Google Scholar 

  28. Zhao, Q., Liu, Y., Yuan, X., et al.: One-shot coherence distillation: towards completing the picture. IEEE Trans. Inf. Theory 10, 62 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Chenming Bai, Yufeng Lian, and Shanshan Yuwen for fruitful discussions. This paper was supported by National Science Foundation of China (Grant No:11671244, 11271237), the Higher school Doctoral Subject Foundation of Ministry of Education of China (Grant No:20130202110001), the Central Universities (Grant No: GK202003070) and the National Natural Science Foundation of China (Grant No: 62001274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Luo, Y. & Li, Y. Distillability for non-full-rank coherent states in the probabilistic framework. Quantum Inf Process 19, 374 (2020). https://doi.org/10.1007/s11128-020-02782-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02782-7

Keywords

Navigation