Skip to main content
Log in

The diameter of uniform spanning trees in high dimensions

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We show that the diameter of a uniformly drawn spanning tree of a connected graph on n vertices which satisfies certain high-dimensionality conditions typically grows like \(\Theta (\sqrt{n})\). In particular this result applies to expanders, finite tori \(\mathbb {Z}_m^d\) of dimension \(d \ge 5\), the hypercube \(\{0,1\}^m\), and small perturbations thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The spectral gap of a graph is the difference between 1 and the second largest eigenvalue of the transition matrix of the simple random walk on the graph.

References

  1. Aldous, D.J.: The random walk construction of uniform spanning trees and uniform labelled trees. SIAM J. Discrete Math. 3(4), 450–465 (1990)

    Article  MathSciNet  Google Scholar 

  2. Aldous, D.J.: The continuum random tree. I. Ann. Probab. 19(1), 1–28 (1991)

    Article  MathSciNet  Google Scholar 

  3. Aldous, D.J.: The Continuum Random Tree. II. An Overview, Stochastic Analysis (Durham, 1990), pp. 23–70 (1991)

  4. Aldous, D.J.: The continuum random tree. III. Ann. Probab. 21(1), 248–289 (1993)

    Article  MathSciNet  Google Scholar 

  5. Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Uniform spanning forests. Ann. Probab. 29(1), 1–65 (2001)

    Article  MathSciNet  Google Scholar 

  6. Broder, A.: Generating random spanning trees. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science, pp. 442–447 (1989)

  7. Chung, F., Horn, P., Linyuan, L.: Diameter of random spanning trees in a given graph. J. Graph Theory 69(3), 223–240 (2012)

    Article  MathSciNet  Google Scholar 

  8. Diaconis, P.W., Saloff-Coste, L.: Moderate growth and random walk on finite groups. Geom. Funct. Anal. 4(1), 1–36 (1994)

    Article  MathSciNet  Google Scholar 

  9. Feder, T., Mihail, M.: Balanced matroids. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 26–38 (1992)

  10. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)

    Article  MathSciNet  Google Scholar 

  11. Hutchcroft, T.: Interlacements and the wired uniform spanning forest. Ann. Probab. 46(2), 1170–1200 (2018)

    Article  MathSciNet  Google Scholar 

  12. Hutchcroft, T.: Universality of high-dimensional spanning forests and sandpiles. Probab. Theory Relat. Fields 176(1–2), 533–597 (2020)

    Article  MathSciNet  Google Scholar 

  13. Kozma, G., Nachmias, A.: The Alexander–Orbach conjecture holds in high dimensions. Invent. Math. 178(3), 635–654 (2009)

    Article  MathSciNet  Google Scholar 

  14. Lawler, G.F.: A self-avoiding random walk. Duke Math. J. 47(3), 655–693 (1980)

    Article  MathSciNet  Google Scholar 

  15. Levin, D.A., Peres, Y.: Markov chains and mixing times. American Mathematical Society, Providence, RI, (2017). Second edition of [MR2466937], With contributions by Elizabeth L. Wilmer, With a chapter on “Coupling from the past” by James G. Propp and David B. Wilson. Available at https://pages.uoregon.edu/dlevin/MARKOV/mcmt2e.pdf

  16. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York (2016)

    Book  Google Scholar 

  17. Pemantle, R.: Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19(4), 1559–1574 (1991)

    Article  MathSciNet  Google Scholar 

  18. Peres, Y., Revelle, D.: Scaling limits of the uniform spanning tree and loop-erased random walk on finite graphs (2004). arXiv Mathematics e-prints, available at arXiv:math/0410430

  19. Schweinsberg, J.: The loop-erased random walk and the uniform spanning tree on the four-dimensional discrete torus. Probab. Theory Relat. Fields 144(3–4), 319–370 (2009)

    Article  MathSciNet  Google Scholar 

  20. Szekeres, G.: Distribution of labelled trees by diameter. In: Combinatorial Mathematics X (Adelaide, 1982), Lecture Notes in Mathematics, pp. 392–397 (1983)

  21. Sznitman, A.-S.: Vacant set of random interlacements and percolation. Ann. Math. Second Ser. 171(3), 2039–2087 (2010)

    Article  MathSciNet  Google Scholar 

  22. Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pp. 296–303. Philadelphia, PA (1996)

Download references

Acknowledgements

The authors wish to thank Tom Hutchcroft and Yinon Spinka for useful discussions and for their helpful comments on the paper. This research is supported by ERC starting Grant 676970 RANDGEOM and by ISF Grant 1207/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peleg Michaeli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michaeli, P., Nachmias, A. & Shalev, M. The diameter of uniform spanning trees in high dimensions. Probab. Theory Relat. Fields 179, 261–294 (2021). https://doi.org/10.1007/s00440-020-00999-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-020-00999-2

Mathematics Subject Classification

Navigation