Skip to main content
Log in

Simply preparation of self-poled PVDF/nanoceria nanocomposite through one-step formation approach

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this article, we developed fully flexible PVDF/CeO2 nanocomposite was prepared by in situ formation of CeO2 nanoparticles confined within PVDF matrix, the films prepared using the facile casting technique. UV–visible spectra confirmed the formation of CeO2 NPs within the matrix. It is remarkable to indicate that the presence of nanoceria dramatically transform ~ 96% of the nonpolar phase of PVDF to the electroactive phase as elucidated from FTIR and XRD. The homogenously distributed CeO2 NPs enveloped into the PVDF matrix as represented by the cross section-SEM image, act as nucleating centers increasing the number of nucleation points, resulting therefore in smaller spherulites. This result can be assigned to the presence of interfacial interaction between negatively charged –CF2 dipoles of PVDF with positively charged CeO2 NPs (+ 8 mV) as revealed from the zeta measurement. The thermal analysis presented that the confined CeO2 NPs improve the thermal stability of PVDF polymer.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Banin U, Ben-Shahar Y, Vinokurov K (2014) Hybrid semiconductor-metal nanoparticles: from architecture to function. Chem Mater 26(1):97–110. https://doi.org/10.1021/cm402131n

    Article  CAS  Google Scholar 

  2. Tenne R (2013) Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles. Front Phys 9(3):370–377. https://doi.org/10.1007/s11467-013-0326-8

    Article  Google Scholar 

  3. Olson J, Dominguez-Medina S, Hoggard A, Wang LY, Chang WS, Link S (2015) Optical characterization of single plasmonic nanoparticles. Chem Soc Rev 44(1):40–57. https://doi.org/10.1039/c4cs00131a

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen TD (2013) From formation mechanisms to synthetic methods toward shape-controlled oxide nanoparticles. Nanoscale 5(20):9455–9482. https://doi.org/10.1039/c3nr01810e

    Article  CAS  PubMed  Google Scholar 

  5. Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14(8):15977–16009. https://doi.org/10.3390/ijms140815977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kang G-D, Cao Y-M (2014) Application and modification of poly(vinylidene fluoride) (PVDF) membranes: a review. J Membr Sci 463:145–165. https://doi.org/10.1016/j.memsci.2014.03.055

    Article  CAS  Google Scholar 

  7. Li B, Xu C, Zheng J, Xu C (2014) Sensitivity of pressure sensors enhanced by doping silver nanowires. Sensors 14(6):9889–9899. https://doi.org/10.3390/s140609889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu W, Yin X, Dai B, Kou J, Ni Y, Lu C (2020) Water flow drived piezo-photocatalytic flexible films: bi-piezoelectric integration of ZnO nanorods and PVDF. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.146119

    Article  Google Scholar 

  9. Adhikary P, Garain S, Mandal D (2015) The co-operative performance of a hydrated salt assisted sponge like P (VDF-HFP) piezoelectric generator: an effective piezoelectric based energy harvester. Phys Chem Chem Phys 17(11):7275–7281. https://doi.org/10.1039/c4cp05513f

    Article  CAS  PubMed  Google Scholar 

  10. Jia Y, Chen X, Ni Q, Li L, Ju C (2013) Dependence of the impact response of polyvinylidene fluoride sensors on their supporting materials' elasticity. Sensors 13(7):8669–8678. https://doi.org/10.3390/s130708669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karan SK, Das AK, Bera R, Paria S, Maitra A, Shrivastava NK, Khatua BB (2016) Effect of γ-PVDF on enhanced thermal conductivity and dielectric property of Fe-rGO incorporated PVDF based flexible nanocomposite film for efficient thermal management and energy storage applications. RSC Adv 6(44):37773–37783. https://doi.org/10.1039/c6ra04365h

    Article  CAS  Google Scholar 

  12. Jin L, Xiao X, Deng W, Nashalian A, He D, Raveendran V, Yan C, Su H, Chu X, Yang T, Li W, Yang W, Chen J (2020) Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. https://doi.org/10.1021/acs.nanolett.0c01987

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yu Y, Sun H, Orbay H, Chen F, England CG, Cai W, Wang X (2016) Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators. Nano Energy 27:275–281. https://doi.org/10.1016/j.nanoen.2016.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yadav P, Raju TD, Badhulika S (2020) Self-poled hBN-PVDF nanofiber mat-based low-cost, ultrahigh-performance piezoelectric nanogenerator for biomechanical energy harvesting. ACS Appl Electron Mater 2(7):1970–1980. https://doi.org/10.1021/acsaelm.0c00272

    Article  CAS  Google Scholar 

  15. Chang C, Tran VH, Wang J, Fuh YK, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10(2):726–731. https://doi.org/10.1021/nl9040719

    Article  CAS  PubMed  Google Scholar 

  16. Yang L, Zhao Q, Chen K, Ma Y, Wu Y, Ji H, Qiu J (2020) PVDF-based composition-gradient multilayered nanocomposites for flexible high-performance piezoelectric nanogenerators. ACS Appl Mater Interfaces 12(9):11045–11054. https://doi.org/10.1021/acsami.9b23480

    Article  CAS  PubMed  Google Scholar 

  17. Eiichi Fukada TS (1971) Piezoelectricity in polarized poly(vinylidene fluoride) films. Polym J 2(5):656–662

    Article  Google Scholar 

  18. Li B, Zhang F, Guan S, Zheng J, Xu C (2016) Wearable piezoelectric device assembled by one-step continuous electrospinning. J Mater Chem C 4(29):6988–6995. https://doi.org/10.1039/c6tc01696k

    Article  CAS  Google Scholar 

  19. Hwang C, Song WJ, Song G, Wu Y, Lee S, Son HB, Kim J, Liu N, Park S, Song HK (2020) A three-dimensional nano-web scaffold of ferroelectric beta-pvdf fibers for lithium metal plating and stripping. ACS Appl Mater Interfaces 12(26):29235–29241. https://doi.org/10.1021/acsami.0c05065

    Article  CAS  PubMed  Google Scholar 

  20. Sun F, Huang SY, Ren HT, Li TT, Zhang Y, Lou CW, Lin JH (2019) Core-sheath structured TiO2 @PVDF/PAN electrospun membranes for photocatalysis and oil–water separation. Polym Compos 41(3):1013–1023. https://doi.org/10.1002/pc.25433

    Article  CAS  Google Scholar 

  21. Ting Y, Gunawan H, Sugondo A, Chiu C-W (2013) A new approach of polyvinylidene fluoride (PVDF) poling method for higher electric response. Ferroelectrics 446(1):28–38. https://doi.org/10.1080/00150193.2013.820983

    Article  CAS  Google Scholar 

  22. Yao S-H, Yuan J-K, Zhou T, Dang Z-M, Bai J (2011) Stretch-modulated carbon nanotube alignment in ferroelectric polymer composites: characterization of the orientation state and its influence on the dielectric properties. J Phys Chem C 115(40):20011–20017. https://doi.org/10.1021/jp205444x

    Article  CAS  Google Scholar 

  23. Baniasadi M, Xu Z, Hong S, Naraghi M, Minary-Jolandan M (2016) Thermo-electromechanical behavior of piezoelectric nanofibers. ACS Appl Mater Interfaces 8(4):2540–2551. https://doi.org/10.1021/acsami.5b10073

    Article  CAS  PubMed  Google Scholar 

  24. Ramasundaram S, Yoon S, Kim KJ, Lee JS (2008) Direct preparation of nanoscale thin films of poly(vinylidene fluoride) containing β-crystalline phase by heat-controlled spin coating. Macromol Chem Phys 209(24):2516–2526. https://doi.org/10.1002/macp.200800501

    Article  CAS  Google Scholar 

  25. Anithakumari P, Mandal BP, Abdelhamid E, Naik R, Tyagi AK (2016) Enhancement of dielectric, ferroelectric and magneto-dielectric properties in PVDF–BaFe12O19 composites: a step towards miniaturizated electronic devices. RSC Adv 6(19):16073–16080. https://doi.org/10.1039/c5ra27023e

    Article  CAS  Google Scholar 

  26. Jin C, Hao N, Xu Z, Trase I, Nie Y, Dong L, Closson A, Chen Z, Zhang JXJ (2020) Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sens Actuators A. https://doi.org/10.1016/j.sna.2020.111912

    Article  Google Scholar 

  27. Kouidri FZ, Berenguer R, Benyoucef A, Morallon E (2019) Tailoring the properties of polyanilines/SiC nanocomposites by engineering monomer and chain substituents. J Mol Struct 1188:121–128. https://doi.org/10.1016/j.molstruc.2019.03.100

    Article  CAS  Google Scholar 

  28. Jana KK, Vishwakarma NK, Ray B, Khan SA, Avasthi DK, Misra M, Maiti P (2013) Nanochannel conduction in piezoelectric polymeric membrane using swift heavy ions and nanoclay. RSC Adv 3(17):6147. https://doi.org/10.1039/c3ra23176c

    Article  CAS  Google Scholar 

  29. Jana S, Garain S, Sen S, Mandal D (2015) The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films. Phys Chem Chem Phys 17(26):17429–17436. https://doi.org/10.1039/c5cp01820j

    Article  CAS  PubMed  Google Scholar 

  30. Sinha TK, Ghosh SK, Maiti R, Jana S, Adhikari B, Mandal D, Ray SK (2016) Graphene-silver-induced self-polarized PVDF-based flexible plasmonic nanogenerator toward the realization for new class of self powered optical sensor. ACS Appl Mater Interfaces 8(24):14986–14993. https://doi.org/10.1021/acsami.6b01547

    Article  CAS  PubMed  Google Scholar 

  31. Lee SG, Ha J-W, Sohn E-H, Park IJ, Lee S-B (2016) Enhancement of polar crystalline phase formation in transparent PVDF-CaF2 composite films. Appl Surf Sci 390:339–345. https://doi.org/10.1016/j.apsusc.2016.08.090

    Article  CAS  Google Scholar 

  32. Li B, Xu C, Zhang F, Zheng J, Xu C (2015) Self-polarized piezoelectric thin films: preparation, formation mechanism and application. J Mater Chem C 3(34):8926–8931. https://doi.org/10.1039/c5tc01869b

    Article  CAS  Google Scholar 

  33. Obaid M, Ghouri ZK, Fadali OA, Khalil KA, Almajid AA, Barakat NA (2016) Amorphous SiO2 NP-incorporated poly(vinylidene fluoride) electrospun nanofiber membrane for high flux forward osmosis desalination. ACS Appl Mater Interfaces 8(7):4561–4574. https://doi.org/10.1021/acsami.5b09945

    Article  CAS  PubMed  Google Scholar 

  34. Meng N, Priestley RCE, Zhang Y, Wang H, Zhang X (2016) The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. J Membr Sci 501:169–178. https://doi.org/10.1016/j.memsci.2015.12.004

    Article  CAS  Google Scholar 

  35. Sarkar S, Garain S, Mandal D, Chattopadhyay KK (2014) Electro-active phase formation in PVDF–BiVO4 flexible nanocomposite films for high energy density storage application. RSC Adv 4(89):48220–48227. https://doi.org/10.1039/c4ra08427f

    Article  CAS  Google Scholar 

  36. Ghosh SK, Alam MM, Mandal D (2014) The in situ formation of platinum nanoparticles and their catalytic role in electroactive phase formation in poly (vinylidene fluoride): a simple preparation of multifunctional poly(vinylidene fluoride) films doped with platinum nanoparticles. RSC Adv 4(79):41886–41894. https://doi.org/10.1039/c4ra06334a

    Article  CAS  Google Scholar 

  37. Elmezayyen AS, Reicha FM, El-Sherbiny IM, Zheng J, Xu C (2017) Significantly enhanced electroactive β phase crystallization and UV-shielding properties in PVDF nanocomposites flexible films through loading of ATO nanoparticles: synthesis and formation mechanism. Eur Polym J 90:195–208. https://doi.org/10.1016/j.eurpolymj.2017.02.036

    Article  CAS  Google Scholar 

  38. Jia N, Xing Q, Liu X, Sun J, Xia G, Huang W, Song R (2015) Enhanced electroactive and mechanical properties of poly(vinylidene fluoride) by controlling crystallization and interfacial interactions with low loading polydopamine coated BaTiO3. J Colloid Interface Sci 453:169–176. https://doi.org/10.1016/j.jcis.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  39. Tong J, Huang H-X, Wu M (2016) Facile green fabrication of well dispersed poly(vinylidene fluoride)/graphene oxide nanocomposites with improved properties. Compos Sci Technol 129:183–190. https://doi.org/10.1016/j.compscitech.2016.04.027

    Article  CAS  Google Scholar 

  40. Wang B, Huang H-X (2014) Incorporation of halloysite nanotubes into PVDF matrix: nucleation of electroactive phase accompany with significant reinforcement and dimensional stability improvement. Compos A Appl Sci Manuf 66:16–24. https://doi.org/10.1016/j.compositesa.2014.07.001

    Article  CAS  Google Scholar 

  41. Mandal A, Nandi AK (2013) Ionic liquid integrated multiwalled carbon nanotube in a poly(vinylidene fluoride) matrix: formation of a piezoelectric beta-polymorph with significant reinforcement and conductivity improvement. ACS Appl Mater Interfaces 5(3):747–760. https://doi.org/10.1021/am302275b

    Article  CAS  PubMed  Google Scholar 

  42. He F-A, Lin K, Shi D-L, Wu H-J, Huang H-K, Chen J-J, Chen F, Lam K-H (2016) Preparation of organosilicate/PVDF composites with enhanced piezoelectricity and pyroelectricity by stretching. Compos Sci Technol 137:138–147. https://doi.org/10.1016/j.compscitech.2016.10.031

    Article  CAS  Google Scholar 

  43. Firestone MA, Hayden SC, Huber DL (2015) Greater than the sum: synergy and emergent properties in nanoparticle–polymer composites. MRS Bull 40(09):760–767. https://doi.org/10.1557/mrs.2015.202

    Article  CAS  Google Scholar 

  44. Abdelhamid EH, Jayakumar OD, Kotari V, Mandal BP, Rao R, Naik VM, Naik R, Tyagi AK (2016) Multiferroic PVDF–Fe3O4hybrid films with reduced graphene oxide and ZnO nanofillers. RSC Adv 6(24):20089–20094. https://doi.org/10.1039/c5ra26983k

    Article  CAS  Google Scholar 

  45. Thakur P, Kool A, Bagchi B, Das S, Nandy P (2015) Effect of in situ synthesized Fe2O3 and Co3O4 nanoparticles on electroactive beta phase crystallization and dielectric properties of poly(vinylidene fluoride) thin films. Phys Chem Chem Phys 17(2):1368–1378. https://doi.org/10.1039/c4cp04006f

    Article  CAS  PubMed  Google Scholar 

  46. Liu X, Chen Y, Cui X, Zeng M, Yu R, Wang G-S (2015) Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2nanorods and polyvinylidene fluoride. J Mater Chem A 3(23):12197–12204. https://doi.org/10.1039/c5ta01924a

    Article  CAS  Google Scholar 

  47. Williams RJ, Hoppe CE, Zucchi IA, Romeo HE, dell'Erba IE, Gomez ML, Puig J, Leonardi AB (2015) Reprint of: self-assembly of nanoparticles employing polymerization-induced phase separation. J Colloid Interface Sci 447:129–138. https://doi.org/10.1016/j.jcis.2015.01.077

    Article  CAS  PubMed  Google Scholar 

  48. Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8(12):1805–1834. https://doi.org/10.1002/smll.201102635

    Article  CAS  PubMed  Google Scholar 

  49. Bai S, Shen X, Zhu G, Li M, Xi H, Chen K (2012) In situ growth of Ni(x)Co(100–x) nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties. ACS Appl Mater Interfaces 4(5):2378–2386. https://doi.org/10.1021/am300310d

    Article  CAS  PubMed  Google Scholar 

  50. Mari M, Muller B, Landfester K, Munoz-Espi R (2015) Ceria/polymer hybrid nanoparticles as efficient catalysts for the hydration of nitriles to amides. ACS Appl Mater Interfaces 7(20):10727–10733. https://doi.org/10.1021/acsami.5b01847

    Article  CAS  PubMed  Google Scholar 

  51. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131. https://doi.org/10.1016/j.nanoen.2011.11.001

    Article  CAS  Google Scholar 

  52. Ram P, Gören A, Ferdov S, Silva MM, Singhal R, Costa CM, Sharma RK, Lanceros-Méndez S (2016) Improved performance of rare earth doped LiMn2O4cathodes for lithium-ion battery applications. New J Chem 40(7):6244–6252. https://doi.org/10.1039/c6nj00198j

    Article  CAS  Google Scholar 

  53. Balaji S, Chandran TM, Mutharasu D (2011) A study on the influence of dysprosium cation substitution on the structural, morphological, and electrochemical properties of lithium manganese oxide. Ionics 18(6):549–558. https://doi.org/10.1007/s11581-011-0650-3

    Article  CAS  Google Scholar 

  54. Han SC, Singh SP, Hwang Yh, Bae EG, Park BK, Sohn KS, Pyo M (2012) Gadolinium-doped LiMn2O4 cathodes in Li Ion batteries: understanding the stabilized structure and enhanced electrochemical kinetics. J Electrochem Soc 159(11):A1867–A1873. https://doi.org/10.1149/2.009212jes

    Article  CAS  Google Scholar 

  55. Barrios AC, Rico CM, Trujillo-Reyes J, Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci Total Environ 563–564:956–964. https://doi.org/10.1016/j.scitotenv.2015.11.143

    Article  CAS  PubMed  Google Scholar 

  56. Khalifi ME, Picaud F, Bizi M (2016) Electronic and optical properties of CeO2from first principles calculations. Anal Methods 8(25):5045–5052. https://doi.org/10.1039/c6ay00374e

    Article  CAS  Google Scholar 

  57. Almeida JMA, Santos PEC, Cardoso LP, Meneses CT (2013) A simple method to obtain Fe-doped CeO2 nanocrystals at room temperature. J Magn Magn Mater 327:185–188. https://doi.org/10.1016/j.jmmm.2012.09.007

    Article  CAS  Google Scholar 

  58. Chaudhary S, Sharma P, Renu R, Kumar R (2016) Hydroxyapatite doped CeO2nanoparticles: impact on biocompatibility and dye adsorption properties. RSC Adv 6(67):62797–62809. https://doi.org/10.1039/c6ra06933a

    Article  CAS  Google Scholar 

  59. Saravanakumar K, Ramjan MM, Suresh P, Muthuraj V (2016) Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants. J Alloys Compd 664:149–160. https://doi.org/10.1016/j.jallcom.2015.12.245

    Article  CAS  Google Scholar 

  60. Guozhu Chen FZ, Sun X, Sun S, Chen R (2011) Benign synthesis of ceria hollow nanocrystals by a template-free method. Cryst Eng Commun 13:2904–2908. https://doi.org/10.1039/c0ce00758g/

    Article  Google Scholar 

  61. Srivastava M, Das AK, Khanra P, Uddin ME, Kim NH, Lee JH (2013) Characterizations of in situ grown ceria nanoparticles on reduced graphene oxide as a catalyst for the electrooxidation of hydrazine. J Mater Chem A 1(34):9792. https://doi.org/10.1039/c3ta11311f

    Article  CAS  Google Scholar 

  62. Tsunekawa S, Fukuda T, Kasuya A (2000) Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles. J Appl Phys 87(3):1318–1321. https://doi.org/10.1063/1.372016

    Article  CAS  Google Scholar 

  63. Joung D, Singh V, Park S, Schulte A, Seal S, Khondaker SI (2011) Anchoring ceria nanoparticles on reduced graphene oxide and their electronic transport properties. J Phys Chem C 115(50):24494–24500. https://doi.org/10.1021/jp206485v

    Article  CAS  Google Scholar 

  64. Servin AD, De la Torre-Roche R, Castillo-Michel H, Pagano L, Hawthorne J, Musante C, Pignatello J, Uchimiya M, White JC (2017) Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiol Biochem PPB 110:147–157. https://doi.org/10.1016/j.plaphy.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  65. Liu X, Ray JR, Neil CW, Li Q, Jun YS (2015) Enhanced colloidal stability of CeO2 nanoparticles by ferrous ions: adsorption, redox reaction, and surface precipitation. Environ Sci Technol 49(9):5476–5483. https://doi.org/10.1021/es506363x

    Article  CAS  PubMed  Google Scholar 

  66. Ravishankar TN, Ramakrishnappa T, Nagaraju G, Rajanaika H (2015) Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. Chem Open 4(2):146–154. https://doi.org/10.1002/open.201402046

    Article  CAS  Google Scholar 

  67. Roselina NRN, Azizan A (2012) Ni nanoparticles: study of particles formation and agglomeration. Proced Eng 41:1620–1626. https://doi.org/10.1016/j.proeng.2012.07.359

    Article  CAS  Google Scholar 

  68. Veranitisagul C, Kaewvilai A, Sangngern S, Wattanathana W, Suramitr S, Koonsaeng N, Laobuthee A (2011) Novel recovery of nano-structured ceria (CeO2) from Ce(III)-benzoxazine dimer complexes via thermal decomposition. Int J Mol Sci 12(7):4365–4377. https://doi.org/10.3390/ijms12074365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang Y, Pan H, Xie G, Jiang Y, Chen C, Su Y, Wang Y, Tai H (2020) Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens Actuators A Phys. https://doi.org/10.1016/j.sna.2019.111789

    Article  PubMed  PubMed Central  Google Scholar 

  70. Soren S, Bessoi M, Parhi P (2015) A rapid microwave initiated polyol synthesis of cerium oxide nanoparticle using different cerium precursors. Ceram Int 41(6):8114–8118. https://doi.org/10.1016/j.ceramint.2015.03.013

    Article  CAS  Google Scholar 

  71. Ahn Y, Lim JY, Hong SM, Lee J, Ha J, Choi HJ, Seo Y (2013) Enhanced piezoelectric properties of electrospun poly(vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly(vinylidene fluoride). J Phys Chem C 117(22):11791–11799. https://doi.org/10.1021/jp4011026

    Article  CAS  Google Scholar 

  72. Ren X, Meng N, Zhang H, Wu J, Abrahams I, Yan H, Bilotti E, Reece MJ (2020) Giant energy storage density in PVDF with internal stress engineered polar nanostructures. Nano Energy. https://doi.org/10.1016/j.nanoen.2020.104662

    Article  Google Scholar 

  73. Chen S, Yao K, Tay FEH, Liow CL (2007) Ferroelectric poly(vinylidene fluoride) thin films on Si substrate with the β phase promoted by hydrated magnesium nitrate. J Appl Phys 102(10):104108. https://doi.org/10.1063/1.2812702

    Article  CAS  Google Scholar 

  74. Thakur P, Kool A, Bagchi B, Hoque NA, Das S, Nandy P (2015) The role of cerium(iii)/yttrium(iii) nitrate hexahydrate salts on electroactive β phase nucleation and dielectric properties of poly(vinylidene fluoride) thin films. RSC Adv 5(36):28487–28496. https://doi.org/10.1039/c5ra03524d

    Article  CAS  Google Scholar 

  75. Liang CL, Mai ZH, Xie Q, Bao RY, Yang W, Xie BH, Yang MB (2014) Induced formation of dominating polar phases of poly(vinylidene fluoride): positive ion-CF2 dipole or negative ion-CH2 dipole interaction. J Phys Chem B 118(30):9104–9111. https://doi.org/10.1021/jp504938f

    Article  CAS  PubMed  Google Scholar 

  76. Mishra S, Sahoo R, Unnikrishnan L, Ramadoss A, Mohanty S, Nayak SK (2020) Investigation of the electroactive phase content and dielectric behaviour of mechanically stretched PVDF-GO and PVDF-rGO composites. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2019.110732

    Article  Google Scholar 

  77. Garain S, Jana S, Sinha TK, Mandal D (2016) Design of in situ poled Ce(3+)-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl Mater Interfaces 8(7):4532–4540. https://doi.org/10.1021/acsami.5b11356

    Article  CAS  PubMed  Google Scholar 

  78. Karan SK, Bera R, Paria S, Das AK, Maiti S, Maitra A, Khatua BB (2016) An approach to design highly durable piezoelectric nanogenerator based on self-poled PVDF/AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency. Adv Energy Mater 6(20):1601016. https://doi.org/10.1002/aenm.201601016

    Article  CAS  Google Scholar 

  79. Thakur P, Kool A, Hoque NA, Bagchi B, Roy S, Sepay N, Das S, Nandy P (2016) Improving the thermal stability, electroactive β phase crystallization and dielectric constant of NiO nanoparticle/C–NiO nanocomposite embedded flexible poly(vinylidene fluoride) thin films. RSC Adv 6(31):26288–26299. https://doi.org/10.1039/c6ra03322a

    Article  CAS  Google Scholar 

  80. Dutta B, Kar E, Bose N, Mukherjee S (2015) Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles. RSC Adv 5(127):105422–105434. https://doi.org/10.1039/c5ra21903e

    Article  CAS  Google Scholar 

  81. Karan SK, Mandal D, Khatua BB (2015) Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 7(24):10655–10666. https://doi.org/10.1039/c5nr02067k

    Article  CAS  PubMed  Google Scholar 

  82. Garain S, Sinha TK, Adhikary P, Henkel K, Sen S, Ram S, Sinha C, Schmeisser D, Mandal D (2015) Self-poled transparent and flexible UV light-emitting cerium complex-PVDF composite: a high-performance nanogenerator. ACS Appl Mater Interfaces 7(2):1298–1307. https://doi.org/10.1021/am507522r

    Article  CAS  PubMed  Google Scholar 

  83. Tamang A, Ghosh SK, Garain S, Alam MM, Haeberle J, Henkel K, Schmeisser D, Mandal D (2015) DNA-assisted beta-phase nucleation and alignment of molecular dipoles in PVDF Film: a realization of self-poled bioinspired flexible polymer nanogenerator for portable electronic devices. ACS Appl Mater Interfaces 7(30):16143–16147. https://doi.org/10.1021/acsami.5b04161

    Article  CAS  PubMed  Google Scholar 

  84. Krikorian V, Pochan DJ (2004) Unusual crystallization behavior of organoclay reinforced poly(L-lactic acid) nanocomposites. Macromolecules 37:6480–6491

    Article  CAS  Google Scholar 

  85. Ewa Piorkowska GR (2013) Handbook of polymer crystallization. Wiley, Hoboken

    Book  Google Scholar 

  86. Wang Y, Li J, Deng Y (2015) Enhanced ferroelectricity and energy storage in poly(vinylidene fluoride)–clay nanocomposite films via nanofiller surface charge modulation. RSC Adv 5(104):85884–85888. https://doi.org/10.1039/c5ra13456k

    Article  CAS  Google Scholar 

  87. Seven KM, Cogen JM, Gilchrist JF (2016) Nucleating agents for high-density polyethylene—a review. Polym Eng Sci 56(5):541–554. https://doi.org/10.1002/pen.24278

    Article  CAS  Google Scholar 

  88. Lopes AC, Caparros C, Ferdov S, Lanceros-Mendez S (2012) Influence of zeolite structure and chemistry on the electrical response and crystallization phase of poly(vinylidene fluoride). J Mater Sci 48(5):2199–2206. https://doi.org/10.1007/s10853-012-6995-9

    Article  CAS  Google Scholar 

  89. Dillon DR, Tenneti KK, Li CY, Ko FK, Sics I, Hsiao BS (2006) On the structure and morphology of polyvinylidene fluoride–nanoclay nanocomposites. Polymer 47(5):1678–1688. https://doi.org/10.1016/j.polymer.2006.01.015

    Article  CAS  Google Scholar 

  90. Wu Y, Hsu SL, Honeker C, Bravet DJ, Williams DS (2012) The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116(24):7379–7388. https://doi.org/10.1021/jp3043494

    Article  CAS  PubMed  Google Scholar 

  91. Ankur Pandey RM (2015) Chemical reduction technique for the synthesis of nickel nanoparticles. Int J Eng Res Appl 5(4):96–100

    Google Scholar 

  92. Tsonos C, Soin N, Tomara G, Yang B, Psarras GC, Kanapitsas A, Siores E (2016) Electromagnetic wave absorption properties of ternary poly(vinylidene fluoride)/magnetite nanocomposites with carbon nanotubes and graphene. RSC Adv 6(3):1919–1924. https://doi.org/10.1039/c5ra24956b

    Article  CAS  Google Scholar 

  93. Soin N, Boyer D, Prashanthi K, Sharma S, Narasimulu AA, Luo J, Shah TH, Siores E, Thundat T (2015) Exclusive self-aligned beta-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem Commun 51(39):8257–8260. https://doi.org/10.1039/c5cc01688f

    Article  CAS  Google Scholar 

  94. Issa AA, Al-Maadeed M, Luyt AS, Mrlik M, Hassan MK (2016) Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano) fibers. J Appl Polym Sci 133:43594. https://doi.org/10.1002/app.43594

    Article  CAS  Google Scholar 

  95. Martins P, Costa CM, Benelmekki M, Botelho G, Lanceros-Mendez S (2012) On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. Cryst Eng Commun 14(8):2807. https://doi.org/10.1039/c2ce06654h

    Article  CAS  Google Scholar 

  96. Kurlyand SK, Ba MF (2007) Low-temperature behaviour of elastomers. New concepts in polymer science. Brill, Amsterdam

    Google Scholar 

  97. Guo D, Cai K, Wang Y (2017) A distinct mutual phase transition in a new PVDF based lead-free composite film with enhanced dielectric and energy storage performance and low loss. J Mater Chem C 5(10):2531–2541. https://doi.org/10.1039/c6tc04648g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (21474096, 21274138 and 21273207). This work also supported by CAS-TWAS President's PhD Fellowship to Ayman S. Elmezayyen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman S. Elmezayyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmezayyen, A.S., Zheng, J. & Xu, C. Simply preparation of self-poled PVDF/nanoceria nanocomposite through one-step formation approach. Polym. Bull. 78, 5547–5566 (2021). https://doi.org/10.1007/s00289-020-03380-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03380-4

Keywords

Navigation