Skip to main content

Advertisement

Log in

Clinacanthus nutans Mitigates Neuronal Death and Reduces Ischemic Brain Injury: Role of NF-κB-driven IL-1β Transcription

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Neuroinflammation has been shown to exacerbate ischemic brain injury, and is considered as a prime target for the development of stroke therapies. Clinacanthus nutans Lindau (C. nutans) is widely used in traditional medicine for treating insect bites, viral infection and cancer, due largely to its anti-oxidative and anti-inflammatory properties. Recently, we reported that an ethanol extract from the leaf of C. nutans could protect the brain against ischemia-triggered neuronal death and infarction. In order to further understand the molecular mechanism(s) for its beneficial effects, two experimental paradigms, namely, in vitro primary cortical neurons subjected to oxygen–glucose deprivation (OGD) and in vivo rat middle cerebral artery (MCA) occlusion, were used to dissect the anti-inflammatory effects of C. nutans extract. Using promoter assays, immunofluorescence staining, and loss-of-function (siRNA) approaches, we demonstrated that transient OGD led to marked induction of IL-1β, IL-6 and TNFα, while pretreatment with C. nutans suppressed production of inflammatory cytokines in primary neurons. C. nutans inhibited IL-1β transcription via preventing NF-κB/p65 nuclear translocation, and siRNA knockdown of either p65 or IL-1β mitigated OGD-mediated neuronal death. Correspondingly, post-ischemic treatment of C. nutans attenuated IκBα degradation and decreased IL-1β, IL-6 and TNFα production in the ischemic brain. Furthermore, IL-1β siRNA post-ischemic treatment reduced cerebral infarct, thus mimicking the beneficial effects of C. nutans. In summary, our findings demonstrated the ability for C. nutans to suppress NF-κB nuclear translocation and inhibit IL-1β transcription in ischemic models. Results further suggest the possibility for using C. nutans to prevent and treat stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

b-Gal:

β-Galactosidase

C. nutans :

Clinacanthus nutans Lindau

CN:

80% Ethanol extract from the leaf of C. nutans

CNS:

Central nervous system

DMSO:

Dimethyl sulfoxide

Icv:

Intracerebroventricular

IκBα:

NF-κB inhibitor, alpha

IL-1β:

Interleukin-1 beta

IL-6:

Interleukin-6

MCA:

Middle cerebral artery

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

OGD:

Oxygen–glucose deprivation

p65:

NF-κB subunit

PN:

Primary cortical neurons

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

TNFα:

Tumor necrosis factor alpha

TTC:

2,3,5-Triphenyltetrazolium chloride

References

  • Alam, A., Ferdosh, S., Ghafoor, K., Hakim, A., Juraimi, A. S., Khatib, A., et al. (2016). Clinacanthus nutans: A review of the medicinal uses, pharmacology and phytochemistry. Asian Pacific Journal of Tropical Medicine, 9(4), 402–409.

    Article  CAS  PubMed  Google Scholar 

  • Bis, J. C., Heckbert, S. R., Smith, N. L., Reiner, A. P., Rice, K., Lumley, T., et al. (2008). Variation in inflammation-related genes and risk of incident nonfatal myocardial infarction or ischemic stroke. Atherosclerosis., 198(1), 166–173.

    Article  CAS  PubMed  Google Scholar 

  • Boutin, H., LeFeuvre, R. A., Horai, R., Asano, M., Iwakura, Y., & Rothwell, N. J. (2001). Role of IL-1α and IL-1β in ischemic brain damage. Journal of Neuroscience, 21(15), 5528–5534.

    Article  CAS  PubMed  Google Scholar 

  • Brouns, R., & De Deyn, P. P. (2009). The complexity of neurobiological processes in acute ischemic stroke. Clinical Neurology and Neurosurgery, 111(6), 483–495.

    Article  CAS  PubMed  Google Scholar 

  • Cai, W., Yang, T., Liu, H., Han, L., Zhang, K., Hu, X., et al. (2018). Peroxisome proliferator-activated receptor γ (PPAR-γ): A master gatekeeper in CNS injury and repair. Progress in Neurobiology, 163–164, 27–58.

    Article  PubMed  CAS  Google Scholar 

  • Chawla, A., Barak, Y., Nagy, L., Liao, D., Tontonoz, P., & Evans, R. M. (2001). PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Medicine, 7, 48–52.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. C., Wu, J. S., Tsai, H. D., Huang, C. Y., Chen, J. J., Sun, G. Y., et al. (2012a). Peroxisome proliferator-activated receptor gamma (PPAR-γ) and neurodegenerative disorders. Molecular Neurobiology, 46(1), 114–124.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. C., Wu, J. S., Yang, S. T., Huang, C. Y., Chang, C., Sun, G. Y., et al. (2012b). Stroke, angiogenesis and phytochemicals. Frontiers Bioscience, 4, 599–610.

    CAS  Google Scholar 

  • Choudhury, G. R., & Ding, S. (2016). Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiology of Diseases, 85, 234–244.

    Article  Google Scholar 

  • Clausen, B. H., Wirenfeldt, M., Høgedal, S. S., Frich, L. H., Nielsen, H. H., Schrøder, H. D., et al. (2020). Characterization of the TNF and IL-1 systems in human brain and blood after ischemic stroke. Acta Neuropathologica Communications, 8(1), 81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyken, M. L. (2010). What lessons have we learned in the past 40 years? Stroke, 41(6), 1073–1075.

    Article  PubMed  Google Scholar 

  • Endres, M., Engelhardt, B., Koistinaho, J., Lindvall, O., Meairs, S., Mohr, J. P., et al. (2008). Improving outcome after stroke: Overcoming the translational roadblock. Cerebrovascular Disease, 25(3), 268–278.

    Article  Google Scholar 

  • Fessler, E. B., Chibane, F. L., Wang, Z., & Chuang, D. M. (2013). Potential roles of HDAC inhibitors in mitigating ischemia-induced brain damage and facilitating endogenous regeneration and recovery. Current Pharmaceutical Design, 19(28), 5105–5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghizzoni, M., Haisma, H. J., Maarsingh, H., & Dekker, F. J. (2011). Histone acetyltransferases are crucial regulators in NF-κB mediated inflammation. Drug Discovery Today, 16(11–12), 504–511.

    Article  CAS  PubMed  Google Scholar 

  • Goetz, M. E., Judd, S. E., Hartman, T. J., McClellan, W., Anderson, A., & Vaccarino, V. (2016). Flavanone intake is inversely associated with risk of incident ischemic stroke in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Journal of Nutrition, 146(11), 2233–2243.

    Article  CAS  Google Scholar 

  • Goldberg, M. P., & Choi, D. W. (1993). Combined oxygen and glucose deprivation in cortical cell culture: Calcium-dependent and calcium-independent mechanisms of neuronal injury. Journal of Neuroscience, 13(8), 3510–3524.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C. Y., Chen, J. J., Wu, J. S., Tsai, H. D., Lin, H., Yan, Y. T., et al. (2015). Novel Link of Anti-apoptotic ATF3 with Pro-apoptotic CTMP in the Ischemic Brain. Molecular Neurobiology, 51(2), 543–557.

    Article  CAS  PubMed  Google Scholar 

  • Kamarudin, M. N. A., Sarker, M. M. R., Kadir, H. A., & Ming, L. C. (2017). Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Clinacanthus nutans (Burm. f.) Lindau: A comprehensive review. Journal of Ethnopharmacology, 206, 245–266.

    Article  CAS  PubMed  Google Scholar 

  • Kao, M. H., & Lin, T. N. (2019). Histone deacetylases in stroke. Chinese Journal of Physiology, 62(3), 95–107.

    Article  CAS  Google Scholar 

  • Khoo, L. W., Audrey Kow, S., Lee, M. T., Tan, C. P., Shaari, K., & Tham, C. L. et al. (2018)A comprehensive review on phytochemistry and pharmacological activities of Clinacanthus nutans (Burm f) Lindau. Evidence-Based Complementary Alternative Medicine 2018:9276260.

  • Kim, J., Fann, D. Y., Seet, R. C., Jo, D. G., Mattson, M. P., & Arumugam, T. V. (2016). Phytochemicals in ischemic stroke. Neuromolecular Medicine, 18(3), 283–305.

    Article  CAS  PubMed  Google Scholar 

  • Lambertsen, K. L., Finsen, B., & Clausen, B. H. (2019). Post-stroke inflammation-target or tool for therapy? Acta Neuropathologica, 137(5), 693–714.

    Article  PubMed  Google Scholar 

  • Lee, J., Jo, D. G., Park, D., Chung, H. Y., & Mattson, M. P. (2014). Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: Focus on the nervous system. Pharmacological Reviews, 66(3), 815–868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liberale, L., Bonetti, N. R., Puspitasari, Y. M., Schwarz, L., Akhmedov, A., Montecucco, F., et al. (2020). Postischemic administration of IL-1α neutralizing antibody reduces brain damage and neurological deficit in experimental stroke. Circulation, 142(2), 187–189.

    Article  CAS  PubMed  Google Scholar 

  • Lin, H., Lin, T. N., Cheung, W. M., Nian, G. M., Tseng, P. H., Chen, S. F., et al. (2002). Cyclooxygenase-1 (COX-1) and Bicistronic COX-1/Prostacyclin synthase gene transfer protect against ischemic cerebral infarction. Circulation, 105, 1962–1969.

    Article  CAS  PubMed  Google Scholar 

  • Lin, T. N., He, Y. Y., Wu, G., Khan, M., & Hsu, C. Y. (1993). Effect of brain edema on infarct volume in a focal cerebral ischemia model in the rat. Stroke, 24, 117–121.

    Article  CAS  PubMed  Google Scholar 

  • Lin, T. N., Wang, C. K., Cheung, W. M., & Hsu, C. Y. (2000). Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion. Journal of Cerebral Blood Flow & Metabolism, 20(2), 387–395.

    Article  CAS  Google Scholar 

  • Mai, C. W., Yap, K. S., Kho, M. T., Ismail, N. H., Yusoff, K., Shaari, K., et al. (2016). Mechanisms underlying the anti-inflammatory effects of Clinacanthus nutans Lindau extracts: Inhibition of cytokine production and toll-like receptor-4 activation. Frontiers Pharmacology, 7, 7.

    Article  CAS  Google Scholar 

  • Mehta, S. L., Manhas, N., & Raghubir, R. (2007). Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Research Reviews, 54(1), 34–66.

    Article  CAS  PubMed  Google Scholar 

  • Michalik, L., Auwerx, J., Berger, J. P., Chatterjee, V. K., Glass, C. K., Gonzalez, F. J., et al. (2006). International Union of Pharmacology LXI. Peroxisome proliferator-activated receptors. Pharmacological Reviews, 58(4), 726–741.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, M. (2017). Lipoquality control by phospholipase A2 enzymes. Proceedings of the Japan Academy Series B, 93(9), 677–702.

    Article  CAS  Google Scholar 

  • Mutazah, R., Hamid, H. A., Mazila Ramli, A. N., Fasihi Mohd Aluwi, M. F., & Yusoff, M. M. (2020). In vitro cytotoxicity of Clinacanthus nutans fractions on breast cancer cells and molecular docking study of sulphur containing compounds against caspase-3. Food and Chemical Toxicology, 135, 110869.

    Article  CAS  PubMed  Google Scholar 

  • Ng, G. Y., Lim, Y. A., Sobey, C. G., Dheen, T., Fann, D. Y., & Arumugam, T. V. (2018). Epigenetic regulation of inflammation in stroke. Therapeutic Advances in Neurological Disorders, 11, 1756286418771815.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nik Abd Rahman, N. M. A., Nurliyana, M. Y., Afiqah, M. N. F. N. N., Osman, M. A., Hamid, M., & Lila, M. A. M. (2019). Antitumor and antioxidant effects of Clinacanthus nutans Lindau in 4 T1 tumor-bearing mice. BMC Complementary and Alternative Medicine, 19(1), 340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Collins, V. E., Macleod, M. R., Donnan, G. A., Horky, L. L., van der Worp, B. H., & Howells, D. W. (2006). 1,026 experimental treatments in acute stroke. Annals of Neurology, 59(3), 467–477.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz, M. L., & de la Vega, L. (2015). New insights into the role of histone deacetylases as coactivators of inflammatory gene expression. Antioxidants & Redox Signaling, 23(1), 85–98.

    Article  CAS  Google Scholar 

  • Stoll, G., & Nieswandt, B. (2019). Thrombo-inflammation in acute ischaemic stroke—implications for treatment. Nature Reviews Neurology, 15(8), 473–481.

    Article  CAS  PubMed  Google Scholar 

  • Sun, G. Y., Chuang, D. Y., Zong, Y., Jiang, J., Lee, J. C., Gu, Z., et al. (2014). Role of cytosolic phospholipase A2 in oxidative and inflammatory signaling pathways in different cell types in the central nervous system. Molecular Neurobiology, 50(1), 6–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, G. Y., Shelat, P. B., Jensen, M. B., He, Y., Sun, A. Y., & Simonyi, A. (2010). Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Medicine, 12(2), 133–148.

    Article  CAS  PubMed  Google Scholar 

  • Sun, P., Liu, D. Z., Jickling, G. C., Sharp, F. R., & Yin, K. J. (2018). MicroRNA-based therapeutics in central nervous system injuries. Journal of Cerebral Blood Flow and Metabolism, 38(7), 1125–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, C. S., Ho, C. F., Heng, S. S., Wu, J. S., Tan, B. K., Ng, Y. K., et al. (2016). Clinacanthus nutans extracts modulate epigenetic link to cytosolic phospholipase A2 expression in SH-SY5Y cells and primary neurons. NeuroMolecular Medicine, 18(3), 441–452.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, H. D., Wu, J. S., Kao, M. H., Chen, J. J., Sun, G. Y., Ong, W. Y., et al. (2016). Clinacanthus nutans protects cortical neurons against hypoxia-induced toxicity by downregulating HDAC1/6. NeuroMolecular Medicine, 18(3), 274–282.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Xue, H., Xu, Q., Zhang, K., Hao, X., Wang, L., et al. (2008). p38 kinase/cytosolic phospholipase A2/cyclooxygenase-2 pathway: A new signaling cascade for lipopolysaccharide-induced interleukin-1beta and interleukin-6 release in differentiated U937 cells. Prostaglandins & Other Lipid Mediators, 86(1–4), 61–67.

    Article  CAS  Google Scholar 

  • Wang, Z. Y., Qin, W., & Yi, F. (2015). Targeting histone deacetylases: Perspectives for epigenetic-based therapy in cardio-cerebrovascular disease. Journal of Geriatric Cardiology, 12(2), 153–164.

    PubMed  Google Scholar 

  • Writing Group Members, Mozaffarian, D., & Benjamin, E. J. (2016). Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation, 133(4), e38–360.

    Google Scholar 

  • Wu, J. S., Cheung, W. M., Tsai, Y. S., Chen, Y. T., Fong, W. H., Tsai, H. D., et al. (2009). Ligand-activated PPAR-γ protects against ischemic cerebral infarction and neuronal apoptosis by 14-3-3ε upregulation. Circulation, 119(8), 1124–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, J. S., Kao, M. H., Tsai, H. D., Cheung, W. M., Chen, J. J., Ong, W. Y., et al. (2018). Clinacanthus nutans mitigates neuronal apoptosis and ischemic brain damage through augmenting the C/EBPβ-Driven PPAR-γ transcription. Molecular Neurobiology, 55(7), 5425–5438.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J. S., Tsai, H. D., Cheung, W. M., Hsu, C. Y., & Lin, T. N. (2016). PPAR-γ ameliorates neuronal apoptosis and ischemic brain injury via suppressing NF-κB−driven p22phox transcription. Molecular Neurobiology, 53(6), 3626–3645.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J. S., Tsai, H. D., Huang, C. Y., Chen, J. J., & Lin, T. N. (2014). 15-deoxy-∆12,14-PGJ2 via activating peroxisome proliferator-activated receptor-gamma suppresses p22phox transcription to protect brain endothelial cells against hypoxia-induced apoptosis. Molecular Neurobiology, 50(1), 221–238.

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki, Y., Matsuura, N., Shozuhara, H., Onodera, H., Itoyama, Y., & Kogure, K. (1995). Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke, 26(4), 676–680.

    Article  CAS  PubMed  Google Scholar 

  • Zakaria, Z. A., Abdul Rahim, M. H., Roosli, R. A. J., Mohd Sani, M. H., Marmaya, N. H., Omar, M. H., et al. (2019). Antinociceptive activity of petroleum ether fraction of Clinacanthus nutans leaves methanolic extract: Roles of nonopioid pain modulatory systems and potassium channels. BioMed Research International, 2019, 6593125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou, L., Zhao, H., Gong, X., Jiang, A., Guan, S., Wang, L., et al. (2015). The association between three promoter polymorphisms of IL-1 and stroke: A meta-analysis. Gene, 567(1), 36–44.

    Article  CAS  PubMed  Google Scholar 

  • Zulkipli, I. N., Rajabalaya, R., Idris, A., Sulaiman, N. A., & David, S. R. (2017). Clinacanthus nutans: A review on ethnomedicinal uses, chemical constituents and pharmacological properties. Pharmaceutical Biology, 55(1), 1093–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Minister of Science and Technology and Academia Sinica, Taiwan (TNL), and the Ministry of Education, Singapore (WYO; DRH). All authors have read and agreed to the manuscript as written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng-Nan Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, MH., Wu, JS., Cheung, WM. et al. Clinacanthus nutans Mitigates Neuronal Death and Reduces Ischemic Brain Injury: Role of NF-κB-driven IL-1β Transcription. Neuromol Med 23, 199–210 (2021). https://doi.org/10.1007/s12017-020-08618-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-020-08618-y

Keywords

Navigation