Skip to main content
Log in

Optimal 3D arm strategies for maximizing twist rotation during somersault of a rigid-body model

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Looking for new arm strategies for better twisting performances during a backward somersault is of interest for the acrobatic sports community while being a complex mechanical problem due to the nonlinearity of the dynamics involved. As the pursued solutions are not intuitive, computer simulation is a relevant tool to explore a wider variety of techniques. Simulations of twisting somersaults have mainly been realized with planar arm motions. The aim of this study was to explore the outcomes of using 3D techniques, with the demonstration that increasing the fidelity of the model does not increase the level of control complexity on the real system. Optimal control was used to maximize twists in a backward straight somersault with both types of models. A multistart approach was used to find large sets of near-optimal solutions. The robustness of these solutions was then assessed by modeling kinematic noise during motion execution. The possibility of using quaternions for representing orientations in this numerical optimization problem was discussed. Optimized solutions showed that 3D techniques generated about two additional twists compared to 2D techniques. The robustness analysis revealed clusters of highly twisting and stable 3D solutions. This study demonstrates the superiority of 3D solutions for twisting in backward somersault, a result that can help acrobatic sports athletes to improve their twisting performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yeadon, M.R., Hiley, M.J.: The control of twisting somersaults. J. Biomech. 47(6), 1340–1347 (2014)

    Article  Google Scholar 

  2. Koschorreck, J., Mombaur, K.: Modeling and optimal control of human platform diving with somersaults and twists. Optim. Eng. 13(1), 29–56 (2012)

    Article  MathSciNet  Google Scholar 

  3. Dullin, H.R., Tong, W.: Twisting somersault. SIAM J. Appl. Dyn. Syst. 15(4), 1806–1822 (2016)

    Article  MathSciNet  Google Scholar 

  4. Frohlich, C.: The physics of somersaulting and twisting. Sci. Am. 242(3), 154–165 (1980)

    Article  Google Scholar 

  5. Bharadwaj, S., Duignan, N., Dullin, H.R., Leung, K., Tong, W.: The diver with a rotor. Indag. Math. 27(5), 1147–1161 (2016)

    Article  MathSciNet  Google Scholar 

  6. Yeadon, M.R., Hiley, M.J.: Twist limits for late twisting double somersaults on trampoline. J. Biomech. 58, 174–178 (2017)

    Article  Google Scholar 

  7. Pigeon, P., Bortolami, S.B., DiZio, P., Lackner, J.R.: Coordinated turn-and-reach movements. I. anticipatory compensation for self-generated coriolis and interaction torques. J. Neurophysiol. 89(1), 276–289 (2003)

    Article  Google Scholar 

  8. van den Bogert, A.J., Blana, D., Heinrich, D.: Implicit methods for efficient musculoskeletal simulation and optimal control. Proc. IUTAM 2, 297–316 (2011)

    Article  Google Scholar 

  9. De Groote, F., Kinney, A.L., Rao, A.V., Fregly, B.J.: Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem. Ann. Biomed. Eng. 44(10), 2922–2936 (2016)

    Article  Google Scholar 

  10. Yeadon, M.R., Hiley, M.J.: The mechanics of the backward giant circle on the high bar. Hum. Mov. Sci. 19(2), 153–173 (2000)

    Article  Google Scholar 

  11. Leboeuf, F., Bessonnet, G., Seguin, P., Lacouture, P.: Energetic versus sthenic optimality criteria for gymnastic movement synthesis. Multibody Syst. Dyn. 16(3), 213–236 (2006)

    Article  Google Scholar 

  12. Murthy, N.V.R.K.N., Keerthi, S.S.: Optimal control of a somersaulting platform diver: a numerical approach. In: [1993] Proceedings IEEE International Conference on Robotics and Automation, pp. 1013–1018. IEEE, Atlanta, USA (1993)

    Chapter  Google Scholar 

  13. Koh, M., Jennings, L., Elliott, B., Lloyd, D.: A predicted optimal performance of the Yurchenko layout vault in women’s artistic gymnastics. J. Appl. Biomech. 19(3), 187–204 (2003)

    Article  Google Scholar 

  14. Yeadon, M.R.: The simulation of aerial movement—II. A mathematical inertia model of the human body. J. Biomech. 23(1), 67–74 (1990)

    Article  Google Scholar 

  15. Neptune, R.R., Clark, D.J., Kautz, S.A.: Modular control of human walking: a simulation study. J. Biomech. 42(9), 1282–1287 (2009)

    Article  Google Scholar 

  16. Higginson, J., Neptune, R.R., Anderson, F.: Simulated parallel annealing within a neighborhood for optimization of biomechanical systems. J. Biomech. 38(9), 1938–1942 (2005)

    Article  Google Scholar 

  17. Schutte, J.F., Koh, B.-I., Reinbolt, J.A., Haftka, R.T., George, A.D., Fregly, B.J.: Evaluation of a particle swarm algorithm for biomechanical optimization. J. Biomech. Eng. 127(3), 465–474 (2005)

    Article  Google Scholar 

  18. Lee, L.-F., Umberger, B.R.: Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. PeerJ 4, e1638 (2016)

    Article  Google Scholar 

  19. Wright, S.J.: Interior point methods for optimal control of discrete time systems. J. Optim. Theory Appl. 77(1), 161–187 (1993)

    Article  MathSciNet  Google Scholar 

  20. Huchez, A., Haering, D., Holvoët, P., Barbier, F., Begon, M.: Local versus global optimal sports techniques in a group of athletes. Comput. Methods Biomech. Biomed. Eng. 18(8), 829–838 (2015)

    Article  Google Scholar 

  21. Huchez, A., Haering, D., Holvoet, P., Barbier, F., Begon, M.: Differences between expert and novice gymnasts performance of a counter movement forward in flight on uneven bars. Sci. Gymnast. J. 8(1), 31–41 (2016)

    Google Scholar 

  22. Hiley, M.J., Yeadon, M.R.: Investigating optimal technique in a noisy environment: application to the upstart on uneven bars. Hum. Mov. Sci. 32(1), 181–191 (2013)

    Article  Google Scholar 

  23. Michaud, B., Begon, M.: Biorbd: Toolbox for biomechanical analyses,” Web page, 2018. [Online]. Available: https://github.com/pyomeca/biorbd

  24. Felis, M.L.: RBDL: an efficient rigid-body dynamics library using recursive algorithms. Auton. Robots 41, 495-511 (2017). https://doi.org/10.1007/s10514-016-9574-0

    Article  Google Scholar 

  25. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2014)

    MATH  Google Scholar 

  26. Andersson, J.A., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: Casadi: a software framework for nonlinear optimization and optimal control. Math. Program. Comput. 11(1), 1–36 (2019)

    Article  MathSciNet  Google Scholar 

  27. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  Google Scholar 

  28. Namdari, S., Yagnik, G., Ebaugh, D.D., Nagda, S., Ramsey, M.L., Williams, G.R. Jr, Mehta, S.: Defining functional shoulder range of motion for activities of daily living. J. Shoulder Elb. Surg. 21(9), 1177–1183 (2012)

    Article  Google Scholar 

  29. Crouch, P.E., Grossman, R.: Numerical integration of ordinary differential equations on manifolds. J. Nonlinear Sci. 3(1), 1–33 (1993)

    Article  MathSciNet  Google Scholar 

  30. Boyle, M.: The integration of angular velocity. Adv. Appl. Clifford Algebras 27(3), 2345–2374 (2017)

    Article  MathSciNet  Google Scholar 

  31. Seelen, L., Padding, J., Kuipers, J.: Improved quaternion-based integration scheme for rigid body motion. Acta Mech. 227(12), 3381–3389 (2016)

    Article  MathSciNet  Google Scholar 

  32. Andrle, M.S., Crassidis, J.L.: Geometric integration of quaternions. J. Guid. Control Dyn. 36(6), 1762–1767 (2013)

    Article  Google Scholar 

  33. Bessonnet, G., Seguin, P., Sardain, P.: A parametric optimization approach to walking pattern synthesis. Int. J. Robot. Res. 24(7), 523–536 (2005)

    Article  Google Scholar 

  34. Yeadon, M.R.: Twisting Somersaults, SB & MC (2015)

  35. Nejadian, S.L., Rostami, M., Towhidkhah, F.: Optimization of barbell trajectory during the snatch lift technique by using optimal control theory. Am. J. Appl. Sci. 5(5), 524–531 (2008)

    Article  Google Scholar 

  36. Kuhlmann, C., Milani, T.L., et al.: Investigation of shoulder kinematics in volleyball spikes. In: ISBS-Conference Proceedings Archive (2008)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Mitacs Acceleration grant #IT11976 and by the Institut National du Sport du Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bailly.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 4 Summary table of the kinematics and kinetics bounds enforced by the optimization problem at the start, during the skill, and at the end of it. − stands for infinite bounds
Fig. 8
figure 8

Right and left arm abd/adduction (elevation) of the most-twisting 2D solution (2.94 twists) without penalization on the hand trajectory

Fig. 9
figure 9

Right and left arm abd/adduction (elevation) and elevation change of plane of the most-twisting 3D solution (4.90 twists) without penalization on the hand trajectory

Fig. 10
figure 10

Right and left arm abd/adduction (elevation) and elevation change of plane of another 3D solution (3.10 twists) with penalization on the hand trajectory

Fig. 11
figure 11

Initial guesses of each optimization variable for the 3D and 2D models. Empty field means initialization to 0

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailly, F., Charbonneau, E., Danès, L. et al. Optimal 3D arm strategies for maximizing twist rotation during somersault of a rigid-body model. Multibody Syst Dyn 52, 193–209 (2021). https://doi.org/10.1007/s11044-020-09759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09759-5

Keywords

Navigation