Skip to main content
Log in

Fabrication of homogeneous waffle-like silver composite substrate for Raman determination of trace chloramphenicol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Waffle-like anodized aluminum oxide homogeneously immobilized with Ag nanoparticles (AAO/Ag) is rationally designed and fabricated as surface-enhanced Raman scattering (SERS) substrate. The as-prepared SERS substrate is characterized with transmission electron microscope (TEM), scanning electron microscopy (SEM), UV–Vis spectrophotometer, and Fourier transform infrared spectrometer (FT-IR). The AAO/Ag substrate shows good uniformity of the Raman signals (RSD = 7.02%) due to waffle-like AAO supporting the well-dispersed Ag nanoparticles. For real application, the AAO/Ag substrate is used for rapid determination of chloramphenicol (CAP) in honey with low detection limit (4.0 × 10−9 mol L−1) and good linearity from 1.0 × 10−5 to 1.0 × 10−8 mol L−1 based on the SERS peak at 1348 cm−1. The better accumulation in the short pore path of AAO improves the target molecule approaching into the vicinity of hot spots of Ag nanoparticles. The high selectivity for CAP is attributed to the strong interaction between -NO2 group in CAP and the composite substrate.

Schematic representation of the preparation of SERS substrate, AAO150/Ag10-5 composite nanoparticles, and antibiotic determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bischoff KM, White DG, Hume ME, Poole TL, Nisbet DJ (2005) The chloramphenicol resistance gene cmlA is disseminated on transferable plasmids that confer multiple-drug resistance in swine Escherichia coli. FEMS Microbiol Lett 243:285–291

    Article  CAS  Google Scholar 

  2. Yu JJ, Lee DH, Gallagher SP, Kenney MC, Boisvert CJ (2018) Mitochondrial impairment in antibiotic induced toxic optic neuropathies. Curr Eye Res 43:1199–1204

    Article  CAS  Google Scholar 

  3. Hanekamp JC, Bast A (2015) Antibiotics exposure and health risks: chloramphenicol. Environ Toxicol Pharmacol 39:213–220

    Article  CAS  Google Scholar 

  4. Pengov A, Flajs VC, Zadnik T, Marinšek J, Pogačnik M (2005) Distribution of chloramphenicol residues in lactating cows following an external application. Anal Chim Acta 529:347–351

    Article  CAS  Google Scholar 

  5. Lu WC, Søren KK (2008) International food safety standards: catalysts for increased Chinese food quality. CJAS 26:70–90

    Article  Google Scholar 

  6. Liu T, Xie J, Zhao J, Song G, Hu Y (2014) Magnetic chitosan Nanocomposite used as cleanup material to detect chloramphenicol in milk by GC-MS. Food Anal Methods 7:814–819

    Article  Google Scholar 

  7. Jia BJ, He X, Cui PL, Liu JX, Wang JP (2019) Detection of chloramphenicol in meat with a chemiluminescence resonance energy transfer platform based on molecularly imprinted grapheme. Anal Chim Acta 1063:136–143

    Article  CAS  Google Scholar 

  8. Chen YN, Kong DZ, Liu LQ, Song SS, Kuang H, Xu CL (2016) Development of an ELISA and immunochromatographic assay for tetracycline, oxytetracycline, and chlortetracycline residues in Milk and honey based on the class-specific monoclonal antibody. Food Anal Methods 9:905–914

    Article  Google Scholar 

  9. Zhou YL, Sui CJ, Yin HS, Wang Y, Wang MH, Ai SY (2018) Tungsten disulfide (WS2) nanosheet-based photoelectrochemical aptasensing of chloramphenicol. Microchim Acta 185:453–461

    Article  Google Scholar 

  10. Hong F, Lin XT, Wu YX, Dong YR, Cao YT, Hu FT, Gan N (2019) Enzyme-free fluorometric assay for chloramphenicol based on double stirring bar-assisted dual signal amplification. Microchim Acta 180:150–157

    Article  Google Scholar 

  11. Qin D, Wang JT, Ge CZ, Lian Z (2019) Fast extraction of chloramphenicol from marine sediments by using magnetic molecularly imprinted nanoparticles. Microchim Acta 186:428–437

    Article  Google Scholar 

  12. Yuan Y, Xu XZ, Xia JF, Zhang FF, Wang ZH, Liu QY (2019) A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol. Microchim Acta 186:191–198

    Article  Google Scholar 

  13. Lai KQ, Zhang YY, Du R, Zhai FL, Rasco BA, Huang YQ (2011) Determination of chloramphenicol and crystal violet with surface enhanced Raman spectroscopy. Sens & Instrumen Food Qual 5:19–24

    Article  Google Scholar 

  14. Tang LJ, Li S, Han F, Liu LQ, Xu LG, Ma W, Kuang H, Li AK, Wang LB, Xu CL (2015) SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens Bioelectron 71:7–12

    Article  CAS  Google Scholar 

  15. Zhang CJ, You EM, Jin Q, Yuan YX, Xu MM, Ding SY, Yao JL, Tian ZQ (2017) Observing the dynamic “hot spots” on two-dimensional au nanoparticles monolayer film. Chem Commun 53:6788–6791

    Article  CAS  Google Scholar 

  16. Dugand V, Hidi IJ, Weber K, May DC, Popp J (2016) In situ hydrazine reduced silver colloid synthesis—enhancing SERS reproducibili. Anal Chim Acta 946:73–79

    Article  Google Scholar 

  17. Chen J, Feng SL, Gao F, Grant E, Xu J, Wang S, Huang Q, Lu XN (2015) Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics. J Food Sci 80:N834–N840

    Article  CAS  Google Scholar 

  18. Shan DZ, Huang LQ, Li X, Zhang WW, Wang J, Cheng L, Feng XH, Liu Y, Zhu JP, Zhang Y (2014) Surface plasmon resonance and interference coenhanced SERS substrate of AAO/Al-based Ag nanostructure arrays. J Phys Chem C 118:23930–23936

    Article  CAS  Google Scholar 

  19. Yang PP, Zheng JZ, Xu Y, Zhang Q, Jiang L (2016) Colloidal synthesis and applications of plasmonic metal nanoparticles. Adv Mater 28:10508–10517

    Article  CAS  Google Scholar 

  20. Wei SH, Zheng MJ, Xiang Q, Hu HL, Duan HG (2016) Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array. Opt Express 24:20613–20620

    Article  CAS  Google Scholar 

  21. Sivashanmugana K, Lee H, Syu CH, Liu BHC, Liao JD (2017) Nanoplasmonic au/Ag/au nanorod arrays as SERS-active substrate for the detection of pesticides residue. J Taiwan Inst Chem Eng 75:287–291

    Article  Google Scholar 

  22. Lu YD, Chen XX, Chen LH (2013) Synthesis of silver nanoparticles through the soft template method and their applications to surface-enhanced Raman scattering. Appl Mech Mater 395–396:158–161

    Article  Google Scholar 

  23. Kosovic M, Balarin M, Ivanda M, Derek V, Marcius M, Ristic M, Gamulin O (2015) Porous silicon covered with silver nanoparticles as surface-enhanced Raman scattering (SERS) substrate for ultra-low concentration detection. Appl Spectrosc 69:1417–1424

    Article  CAS  Google Scholar 

  24. Li YX, Man SQ, Zhang HT, Gao J, Wu TX, Le X, Xiao GN (2016) Surface-enhanced Raman scattering activities of gold nanocap arrays and hollow gold nanocap particles. Spectrosc Lett 49:413–419

    Article  CAS  Google Scholar 

  25. Mondal B, Saha SK (2010) Fabrication of SERS substrate using nanoporous anodic alumina template decorated by silver nanoparticles. Chem Phys Lett 497:89–93

    Article  CAS  Google Scholar 

  26. Du YB, Shi LF, He TC, Sun XW, Mo YJ (2008) SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template. Appl Surf Sci 5:1901–1905

    Article  Google Scholar 

  27. Choi D, Choi Y, Hong S, Kang T, Lee LP (2010) Self-organized hexagonal-nanopore SERS Array. Small 16:1741–1744

    Article  Google Scholar 

  28. Sui CF, Wang KG, Wang S, Ren JY, Bai XH, Bai JT (2016) SERS activity with tenfold detection limit optimization on a type of nanoporous AAO-based complex multilayer substrate. Nanoscale 8:5920–5927

    Article  CAS  Google Scholar 

  29. Xu W, Zhu XG, Chu ZQ, Wang ZM, Xiao ZY, Huang ZL (2017) ScroBiculate sub-10 nm nanocavity arrays as effective sers substrate for the trace determination of 3,3′,4,4′—polychlorinated biphenyls. Appl Surf Sci 399:711–715

    Article  CAS  Google Scholar 

  30. Stępniowski WJ, Bojar Z (2011) Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features. Surf Coat Technol 206:265–272

    Article  Google Scholar 

  31. Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  Google Scholar 

  32. Liu Z, Zhang FL, Yang ZB, You HJ, Tian CF, Li ZY, Fang JX (2013) Gold mesoparticles with precisely controlled surface topographies for single-particle surface-enhanced Raman spectroscopy. J Mater Chem C 1:5567–5576

    Article  CAS  Google Scholar 

  33. Sai N, Wu YT, Sun Z, Yu GG, Huang GW (2019) A novel photonic sensor for the detection of chloramphenicol. Arab J Chem 12:4398–4404

    Article  CAS  Google Scholar 

  34. Tao XQ, Zhou S, Yuan XM, Li HJ (2016) Determination of chloramphenicol in milk by ten chemiluminescent immunoassays: influence of assay format applied. Anal Methods 8:4445–4451

    Article  CAS  Google Scholar 

  35. Ayesha S, Ayesha T, Peter AL, Adnan M, Sadaf H, Yu HJ, Arshad M, Thomas JW, Hamid Rashid M, Waheed SK, Sadia ZB (2020) Design of heterostructured hybrids comprising ultrathin 2D bismuth tungstate nanosheets reinforced by chloramphenicol imprinted polymers used as biomimetic interfaces for mass-sensitive detection. Colloids Surf B: Biointerfaces 188:110775

    Article  Google Scholar 

  36. Ding YF, Zhang X, Yin HJ, Meng QY, Zhao YM, Liu L, Wu ZL, Xu HJ (2017) Quantitative and sensitive detection of chloramphenicol by surface-enhanced Raman scattering. Sensors 17:2962–2968

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (no. 21475088, no. 21707091), International Joint Laboratory on Resource Chemistry (IJLRC), Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye Ying or Haifeng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fabrication of AAO; Surface morphologies; Optimization of the SERS substrate; The element mappings of the SEM on the AAO150/Ag10-5 substrate; FTIR spectra of substrates; SERS spectra of R6G with different concentrations on the flat aluminum foil with silver nanoparticles; The SERS intensity maps and the optical images of R6G (1.0×10-6 mol∙L-1) measured at a peak of 1511 cm-1 at different positions of the 25 x 25 μm2 from coffee ring SERS substrate with scanning step of 1 μm; The electric field intensity distribution of the nanoparticles is simulated on the substrate; The SERS spectra of honey samples with different CAP concentrations on the flat aluminum foil with silver nanoparticles; The limit of detection of the AAO150/Ag10-5 SERS substrate for the determination of chloramphenicol.

ESM 1

(DOCX 4469 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, D., Jie, Z., Ma, Z. et al. Fabrication of homogeneous waffle-like silver composite substrate for Raman determination of trace chloramphenicol. Microchim Acta 187, 593 (2020). https://doi.org/10.1007/s00604-020-04567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04567-2

Keywords

Navigation