Skip to main content
Log in

Specific Features of the Structure, Properties, and Technological Plasticity of Metal Products Made of 03Kh22N5AM3 Corrosion-Resistant Duplex Steel

  • CORROSION-RESISTANT AND STRUCTURAL STEELS
  • Published:
Metal Science and Heat Treatment Aims and scope

We consider specific features of formation of the structure and properties of 03Kh22N5AM3 corrosion-resistant duplex steel in the process of deformation and thermal treatment of rolled milled bars. We analyze the influence of the chemical composition and the conditions of smelting, casting, hot deformation, and heat treatment on the formation of intermetallic phases, which reduce the ductility of the metal. We also give recommendations aimed at increasing the impact toughness of 03Kh22N5AM3 steel at –40 and –46°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.-H. Jeon, S.-T. Kim, S.-Y. Kim, et al., “Effects of solution-annealing temperature on the precipitation of secondary phases and the associated pitting corrosion resistance in hyper duplex stainless steel,” Mater. Trans., 54(8), 1473 – 1479 (2013).

    CAS  Google Scholar 

  2. Y. Guo, J. Hu, J. M. Li, and Y. Wu, “Effect of annealing temperature on the mechanical and corrosion behavior of a newly developed novel lean duplex stainless steel,” Materials, No. 7, 6604 – 6619 (2014), https://doi.org/10.3390/ma7096604.

  3. S.-H. Jeon, J. Park, H.-J. Kim, et al., “Effect of Cu on the precipitation of deleterious phases and the mechanical properties of 27Cr – 7Ni hyper duplex stainless steels,” Mater. Trans., 55(6), 971 – 977 (2014).

    CAS  Google Scholar 

  4. H. Sieurin, Fracture Toughness Properties of Duplex Stainless Steels, Scientific Thesis for the Degree of Doctorate of Engineering, Royal Institute of Technology, Stockholm, Sweden (2006).

    Google Scholar 

  5. Duplex Stainless Steel: Publication of the “Outokumpu” Company [in Russian], http://www.outokumpu.com.

  6. Duplex Grades of Stainless Steel: Publication of the “Outokumpu” Company [in Russian], http://www.outokumpu.com.

  7. J. A. Vinoth Jebaraj and L Ajaykumar, “Influence of microstructural changes on impact toughness of weldment and base metal of duplex stainless steel AISI 2205 for low-temperature applications,” Proc. Eng., 64, 456 – 466 (2013).

  8. S.-K. Kim, K.-Y. Kang, M.-S. Kim, and J.-M. Lee, “Low-temperature mechanical behavior of super duplex stainless steel with sigma precipitation,” Metals, 5(3), 1732 – 1745 (2015), https://doi.org/10.3390/met5031732.

    Article  CAS  Google Scholar 

  9. Grades of Stainless Steel, Properties, and World Standards: Publication of the “Outokumpu” Company [in Russian], http://www.outokumpu.com.

  10. M. Knyazeva and M. Pohl, “Duplex steels: Part I: Genesis, formation, structure,” Metallogr., Microstruct., Anal., 2, 113 – 121 (2013), https://doi.org/10.1007/s13632–013–0066–8.

  11. T. A. Derkach, “Analysis of the quality characteristics of corrosion-resistant ferritic-austenitic steels with an aim to extend the fields of their application,” Metalloved. Term. Obrab. Metal., No. 3(66), 22 – 29 (2013).

  12. I. Calliari, M. Breda, M. Frigo, M. Pellizzari, and E. Ramous, “Isothermal aging in low-alloyed duplex stainless steels,” Vest. MGTU Im. Nosova, No. 4, 44 – 53 (2014).

  13. F. Tehovnik, B. Arzenšek, B. Arh, D. Skobir, B. Pirnar, and B. ž užek, “Microstructure evolution in SAF 2507 super duplex stainless steel,” Mater. Technol., 45(4), 339 – 345 (2011).

  14. Y. Zhang, H. Zhang, and J. Han, “Phenomenological model describing the formation of peeling defects in hot-rolled 2205 duplex stainless steel,” Met. Sci. Heat Treat., 59(1 – 2), 30 – 33 (2017).

  15. M. Pooyamanesh, B. Eghbali, G. R. Ebrahimi, and M. Saadani, “Influence of initial microstructure on hot deformation behavior of duplex stainless steels,” Adv. Mater. Proc., 1(2), 61 – 67 (2012).

    Google Scholar 

  16. M. Knyazeva and M. Pohl, “Duplex steels: Part II: Metallography, microstructure, and analysis” Metallogr., Microstruct., Anal., 2(5), 343 – 351 (2013), https://doi.org/10.1007/s13632-013-0088-2.

    Article  CAS  Google Scholar 

  17. I. Calliari, M. Pellizzari, M. Zanellato, and E. Ramous, “The phase stability in Cr – Ni and Cr – Mn duplex stainless steels,” J. Mater. Sci., 46(21), 6916 – 6924 (2011), https://doi.org/10.1007/s10853-011-5657-7.

    Article  CAS  Google Scholar 

  18. S. Topolska and J. Łabanowski, “Effect of microstructure on impact toughness of duplex and superduplex stainless steels,” J. Achiev. Mater. Manuf. Eng., 36(1), 142 – 148 (2009).

  19. P. Podany, M. Kover, and J. Dlouhy, “Effect of ageing on phase evolution and precipitation behavior of duplex steel,” in: IOP Conf. Series: Materials Science and Engineering, Volume 103, The 4th Global Conf. on Materials Science and Engineering (CMSE 2015) (3 – 6 August 2015, Macau, China), Institute of Physics Publishing (2015), pp. 1 – 7.

  20. I. Calliari, M. Breda, E. Ramous, M. Magrini, and G. Staffelini, “Effect of isothermal heat treatments on duplex stainless steels impact toughness,” in: Proc. of the 22nd Conv. Naz. IGF (July 1 – 3, Roma, Italia), Roma (2013), pp. 56 – 65.

  21. I. Calliari, E. Ramous, and M. Pellizzari, “Thermal and mechanical treatment effects on phase transformations in duplex stainless steels,” in: Stainless Steel World 2010 Conf., University of Trento, Trento, Italy (2010), http://www.stainless-steelworld.net/pdf/sswNNB_duplex_pudove.pdf?resourseld=105.

  22. A. I. Panchenko, L. N. Korol’, A. V. Zhaivoronok, L. V. Tur, S. A. Panchenko, and A. E. Balev, “Production of pipe blanks from corrosion-resistant duplex steel,” Stal’, No. 9, 49 – 52 (2012); English translation: Steel, 42, 724 – 727 (2012), https://doi.org/10.3103/S0967091212100117.

  23. I. Calliari, M. Zanesco, E. Ramous, and P. Bassani, “Effects of isothermal ageing and continuous cooling after solubilization in a duplex stainless steel,” J. Mater. Eng. Perform., 16, 109 – 112 (2007), https://doi.org/10.1007/s11665-006-9017-8.

    Article  CAS  Google Scholar 

  24. A. Kisasoz, A. Karaaslan, and Ya. Bayrak, “Effect of etching methods in metallographic studies of duplex stainless steel 2205,” Metall. Term. Obrab. Met., No. 12, 9 – 12 (2016); English translation: Met. Sci. Heat Treat., 58, 704 – 706 (2017).

  25. A. Barreto, T. Andrade, C. Silva, H. de Miranda, “Use of EPR-DL field test equipment for detection of sigma phase,” Technol. Metal. Mater. Miner., 11(2), 146 – 154 (2014), https://doi.org/10.4322/tmm.2014.022.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Spektor.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 3 – 14, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunitskaya, I.N., Spektor, Y.I., Sal’nikov, A.S. et al. Specific Features of the Structure, Properties, and Technological Plasticity of Metal Products Made of 03Kh22N5AM3 Corrosion-Resistant Duplex Steel. Met Sci Heat Treat 62, 357–368 (2020). https://doi.org/10.1007/s11041-020-00569-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00569-2

Key words

Navigation