Skip to main content

Advertisement

Log in

Triphenylphosphonium conjugates of 1,2,3-triazolyl nucleoside analogues. Synthesis and cytotoxicity evaluation

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of triphenylphosphonium (TPP) conjugates of 1,2,3-triazolyl analogues of several pyrimidine nucleosides was synthesized and evaluated for the in vitro cytotoxicity against human cancer cell lines M-HeLa, MCF-7, PANC-1, PC-3, DU145, SKOV-3, A275, and normal human cell line WI-38. In these TPP-conjugates triphenylphosphonium cation was attached via a tetramethylene chain to the N-3 atom of the heterocycle moiety (uracil, thymine, quinazoline-2,4-dione), which was coupled with the D-ribofuranosyl-1,2,3-triazol-4-yl fragment via methylene or tetramethylene linker. It was shown for the first time that the conjugation of 1,2,3-triazolyl derivatives of uridine, its analogues featuring quinazoline-2,4-dione fragment as well as uracil and thymine derivatives, having propargyl or a 1,2,3-triazolyl substituent at the N-1 atom, with a TPP-butyl cation endowed some of them with cytotoxic activity against human cancer cells. Among all human cancer cell lines used, DU-145 and A375 cells were the most sensitive to these TPP conjugates. At the same time, all tested compounds did not inhibit growth of normal cells WI-38. Propargyl containig TPP-conjugates of uracil 4f, 4j, and thymine 5f showed the highest cytotoxicity with IC50 values in the low micromolar concentration range. The present findings suggest that TPP-conjugates of uracil and thymine derivatives would be promising for further development as an anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  1. Jean SR, Tulumello DV, Wisnovsky SP, Lei EK, Pereira MP, Kelley OS.Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem Biol. 2014;9:323–33.

    Article  Google Scholar 

  2. Pathania D, Millard M, Neamati N.Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism Adv Drug Deliv Rev. 2009;61:1250–75.

    Article  CAS  Google Scholar 

  3. Smith RAJ, Hartley RC, Cocheme HM, Murphy MP.Mitochondrial pharmacology Trends Pharmacol Sci. 2012;33:341–52.

    Article  CAS  Google Scholar 

  4. Voet D, Voet JG, Pratt CW. Fundamentals of biochemistry: life at the molecular level. 2nd ed. Hoboken, NJ: John Wiley and Sons, Inc; 2006.

  5. Murphy MP, Smith RAJ.Targeting antioxidants to mitochondria by conjugation to lipophilic cations Annu Rev Pharmacol Toxicol. 2007;47:629–56.

    Article  CAS  Google Scholar 

  6. Sakhrani NM, Padh H.Organelle targeting: third level of drug targeting Drug Des Devel Ther. 2013;7:585–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Murphy MP.Targeting lipophilic cations to mitochondria Biochim Biophys Acta. 2008;1777:1028–31.

    Article  CAS  Google Scholar 

  8. Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM. et alMitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives Acta Pharm Sin B 2018;8:862–80.

    Article  Google Scholar 

  9. Wang JY, Li JQ, Xiao YM, Fu B, Qin ZH.Triphenylphosphonium (TPP)-based antioxidants: a new perspective on antioxidant design ChemMedChem. 2020;15:404–10.

    Article  CAS  Google Scholar 

  10. Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J. et alMitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications Chem Rev. 2017;117:10043–120.

    Article  CAS  Google Scholar 

  11. Kalyanaramana B, Cheng G, Hardy M, Ouarie O, Lopez M, Joseph J. et alA review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: therapeutic targeting of tumor mitochondria with lipophilic cationic compounds Redox Biol. 2018;14:316.

    Article  Google Scholar 

  12. Ross MF, Kelso GF, Blaikie FH, James AM, Cocheme HM, Filipovska A. et alLipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology Biokhimiya (Moscow). 2005;70:273–83.

    Google Scholar 

  13. Jeena MT, Kim S, Jin S, Ryu J-H.Recent progress in mitochondria-targeted drug and drug-free agents for cancer therapy Cancers 2020;12:4–24.

    Article  CAS  Google Scholar 

  14. Millard M, Gallagher JD, Olenyuk BZ, Neamati NA selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers J Med Chem. 2013;56:9170–9.

    Article  CAS  Google Scholar 

  15. Reddy ChA, Somepalli V, Golakoti T, Kanugula AKR, Karnewar S, Rajendiran K. et alMitochondrial-targeted curcuminoids: a strategy to enhance bioavailability and anticancer efficacy of curcumin PLOS ONE. 2014;9:e89351.

    Article  Google Scholar 

  16. Seley-Radtke KL, Yates MK.The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold Antivir Res. 2018;154:66–86.

    Article  CAS  Google Scholar 

  17. Kumar JM, Idris MM, Srinivas G, Kumar PV, Meghah V, Kavitha M. et alPhenyl 1,2,3-triazole-thymidine ligands stabilize G-quadruplex DNA, inhibit DNA synthesis and potentially reduce tumor cell proliferation over 3’-azido deoxythymidine. PLOS ONE 2013;8:e70798.

    Article  Google Scholar 

  18. Ruddarraju RR, Murugulla AC, Kotla R, Tirumalasetty MCB, Wudayagiri R, Donthabakthuni S. et alDesign, synthesis, anticancer, antimicrobial activities and molecular docking studies of theophylline containing acetylenes and theophylline containing 1,2,3-triazoles with variant nucleoside derivatives Eur J Med Chem. 2016;123:379–96.

    Article  CAS  Google Scholar 

  19. Park SM, Yang H, Park SK, Kim HM, Kim BH.Design, synthesis, and anticancer activities of novel perfluoroalkyltriazole-appended 20-deoxyuridines Bioorg Med Chem Lett. 2010;20:5831–4.

    Article  CAS  Google Scholar 

  20. Liu C, Zou G, Peng S, Wang Y, Yang W, Wu F. et al5-Formyluracil as a multifunctional building block in biosensor designs Angew Chem. 2018;57:9689–93.

    Article  CAS  Google Scholar 

  21. Andreeva OV, Belenok MG, Saifina LF, Shulaeva MM, Dobrynin AB, Sharipova RR. et alSynthesis of novel 1,2,3-triazolyl nucleoside analogues bearing uracil, 6- methyluracil, 3,6-dimethyluracil, thymine, and quinazoline-2,4-dione moieties Tetrahedron Lett. 2019;60:151276–81.

    Article  CAS  Google Scholar 

  22. Koszytkowska-Stawinska M, Mironiuk-Puchalska E, Rowicki T.Synthesis of 1,2,3-triazolo-nucleosides via the post-triazole N-alkylation Tetrahedron 2012;68:214–25.

    Article  CAS  Google Scholar 

  23. Sakai TT, Pogolotti AL, Santi DV.A facile synthesis of 5-substituted 1-methyluracils and cytosine J Heterocyclic Chem. 1968;5:849–51.

    Article  CAS  Google Scholar 

  24. Brown DJ, Hoerger E, Mason SF. Simple Pyrimidines. Part II. 1:2-Dihydro-1-methylpyrimidines and the configuration of the N-methyluracils. J Chem Soc. 1955;211–7 https://doi.org/10.1039/JR9550000211.

  25. Semenov VE, Nikolaev AE, Krylova ES, Sharafutdinova DR, Reznik VS.1,3-Dipolar cycloaddition reactions in the series of N-alkynyl-substituted uracils Rus J Org Chem. 2012;48:582–7.

    Article  CAS  Google Scholar 

  26. Hill WE, Islam MQ, Webb TR, McAuliffe CA. Unsymmetrical bisphosphorus compounds. Routes to the successful preparation of Ph2P(CH2)n PR2 (n = 6, 8; R = Me, Et). Inorg Chim Acta. 1988;146:111–4.

    Article  CAS  Google Scholar 

  27. Semenova MN, Li Kiselyov, AS DD, Semenov VV. Sea urchin embryo as a model organism for the rapid functional screening of tubulin modulators. BioTechniques. 2006;40:765–74.

    Article  CAS  Google Scholar 

  28. Semenova M, Demchuk D, Tsyganov D, Chernysheva N, Samet Silyanova, et al. The sea urchin embryo model as a reliable in vivo phenotypic screen to characterize selective antimitotic molecules. Comparative evaluation of combretapyrazoles, -isoxazoles, -1,2,3-triazoles, and -pyrroles as tubulin binding agents. ACS Comb Sci. 2018;20:700–21.

    Article  CAS  Google Scholar 

  29. Du C, Fu S, Ren X, Wang X, Wang Z, Zhou J., et al. A diketopyrrolopyrrole-based fluorescent probe for investigating mitochondrial zinc ions. New J Chem. 2018;42:3493–502.

    Article  CAS  Google Scholar 

  30. Mansour AM, Shehab OR. Lysozyme and DNA binding affinity of Pd(II) and Pt(II) complexes bearing charged N,N-pyridylbenzimidazole bidentate ligands. Dalton. Trans. 2018;47:3459–68.

    Article  CAS  Google Scholar 

  31. Simpson PV, Schmidt C, Ott DD, I Bruhn, H Schatzschneider, Schatzschneider U. Synthesis, cellular uptake and biological activity against pathogenic microorganisms and cancer cells of rhodium and iridium N-heterocyclic carbene complexes bearing charged substituents. Eur J Inorg Chem. 2013;32:5547–54.

    Article  Google Scholar 

  32. Benaissa I, Taakili R, Lugan N, Canac Y. A convenient access to N-phosphonio-substituted NHC metal complexes [M = Ag(I), Rh(I), Pd(II)]. Dalton Trans. 2017;46:12293–305.

    Article  CAS  Google Scholar 

  33. Agnello, M. Introduction Chapter: Sea Urchin-Knowledge and Perspectives. In: Agnello M, editors. Sea Urchin - from environment to aquaculture and biomedicine, Rijeka, Croatia: InTech; 2017. p. 3–16.

  34. Di Bernardo, M, Di Carlo, M. The sea urchin embryo: a model for studying molecular mechanisms involved in human diseases and for testing bioactive compounds. In: Agnello M, editors. Sea Urchin - from environment to aquaculture and biomedicine. Rijeka, Croatia: InTech; 2017. p. 119–44.

Download references

Acknowledgements

The authors from Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, RAS are grateful to the Assigned Spectral-Analytical Center of FRC Kazan Scientific Center of RAS for technical assistance in research.

Funding

Synthesis and cytotoxicity evaluation were supported by the Russian Science Foundation (grant no. 19-13-00003). Phenotypic sea urchin embryo assay was performed by MNS under the IDB RAS Government basic research program in 2020 no. 0088-2019-0005. IYS is grateful to the Ministry of Education and Science of the Russian Federation (theme no. AAAA-A18-118040390114-8) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav E. Semenov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strobykina, I.Y., Andreeva, O.V., Belenok, M.G. et al. Triphenylphosphonium conjugates of 1,2,3-triazolyl nucleoside analogues. Synthesis and cytotoxicity evaluation. Med Chem Res 29, 2203–2217 (2020). https://doi.org/10.1007/s00044-020-02629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02629-x

Keywords

Navigation