Skip to main content
Log in

Functionalized imidazolium-based ionic liquids: biological activity evaluation, toxicity screening, spectroscopic, and molecular docking studies

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of long-chain imidazolium-based ionic liquids (ILs) 1-dodecyl-3-methylimidazolium chloride (1), 1,3-bis(octyloxycarbonylmethyl)imidazolium chloride (2) and 1-dodecyloxycarbonylmethyl-3-methyloxycarbonylmethylimidazolium chloride (3), were synthesized and evaluated as antimicrobials against a wide range of bacteria and fungi. Toxicological risks of selected compounds were assessed using the biomodels of various organizational and functional levels. All compounds demonstrated significant antibacterial and antifungal activity. The toxicity results indicate that ILs containing an ester functional group in the alkyl side chain exhibited much lower toxicity to D. magna and acetylcholinesterase inhibition than ILs with long alkyl chain without polar substituents, while toxicity toward Danio rerio was on a par. The HSA-binding properties of ILs have been investigated by FT-IR spectroscopy technique and the evidences have suggested that the test compounds could induce the protein unfolding and changes in the secondary structure of HSA. The docking studies were carried out to provide structural insights of the ILs–HSA-binding interactions. The docked compounds exhibit a high binding affinity to HSA and the hydrogen bonding, hydrophobic and electrostatic interactions played a major role in the process. ILs 2 and 3 may be perspective for further investigation as potential low-toxic biocides with high antimicrobial activity against reference and clinical multidrug-resistant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ghandi K. A review of ionic liquids, their limits and applications. Green Sustain Chem. 2014;4:44–53.

    Article  CAS  Google Scholar 

  2. Visser AE, Rogers RD. Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry. J Solid State Chem. 2003;171:109–13.

    Article  CAS  Google Scholar 

  3. Shiddiky MJ, Torriero AA. Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron. 2011;26:1775–87.

    Article  CAS  PubMed  Google Scholar 

  4. Boxall DL, Osteryoung RA. Switching potentials and conductivity of polypyrrole films prepared in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Electrochem Soc. 2004;151:E41–5.

    Article  CAS  Google Scholar 

  5. Yue C, Fang D, Liu L, Yi T-F. Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J Mol Liq. 2011;163:99–121.

    Article  CAS  Google Scholar 

  6. Percec V, Grigoras C. Catalytic effect of ionic liquids in the Cu2O/2, 2′-bipyridine catalyzed living radical polymerization of methyl methacrylate initiated with arenesulfonyl chlorides. J Polym Sci A Polym Chem. 2005;43:5609–19.

    Article  CAS  Google Scholar 

  7. Park S, Kazlauskas RJ. Biocatalysis in ionic liquids–advantages beyond green technology. Curr Opin Biotechnol. 2003;14:432–7.

    Article  CAS  PubMed  Google Scholar 

  8. Galonde N, Nott K, Debuigne A, Deleu M, Jerôme C, Paquot M, et al. Use of ionic liquids for biocatalytic synthesis of sugar derivatives. J Chem Technol Biotechnol. 2012;87:451–71.

    Article  CAS  Google Scholar 

  9. Lee K-M, Chiu W-H, Hsu C-Y, Cheng H-M, Lee C-H, Wu C-G. Ionic liquid diffusion properties in tetrapod-like ZnO photoanode for dye-sensitized solar cells. J Power Sources. 2012;216:330–6.

    Article  CAS  Google Scholar 

  10. Ferraz R, Branco LC, Prudencio C, Noronha JP, Petrovski Ž. Ionic liquids as active pharmaceutical ingredients. ChemMedChem. 2011;6:975–85.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao D, Liao Y, Zhang Z. Toxicity of ionic liquids. Clean–Soil, Air, Water. 2007;35:42–8.

    Article  CAS  Google Scholar 

  12. Pernak J, Borucka N, Walkiewicz F, Markiewicz B, Fochtman P, Stolte S, et al. Synthesis, toxicity, biodegradability and physicochemical properties of 4-benzyl-4-methylmorpholinium-based ionic liquids. Green Chem. 2011;13:2901–10.

    Article  CAS  Google Scholar 

  13. Stasiewicz M, Mulkiewicz E, Tomczak-Wandzel R, Kumirska J, Siedlecka EM, Gołebiowski M, et al. Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol Environ Saf. 2008;71:157–65.

    Article  CAS  PubMed  Google Scholar 

  14. Stolte S, Matzke M, Arning J, Böschen A, Pitner W-R, Welz-Biermann U, et al. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem. 2007;9:1170–9.

    Article  CAS  Google Scholar 

  15. Samorì C, Malferrari D, Valbonesi P, Montecavalli A, Moretti F, Galletti P, et al. Introduction of oxygenated side chain into imidazolium ionic liquids: evaluation of the effects at different biological organization levels. Ecotoxicol Environ Saf. 2010;73:1456–64.

    Article  PubMed  CAS  Google Scholar 

  16. Kumar RA, Papaïconomou N, Lee JM, Salminen J, Clark DS, Prausnitz JM. In vitro cytotoxicities of ionic liquids: effect of cation rings, functional groups, and anions. Environ Toxicol. 2009;24:388–95.

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Ohlin CA, Lu Q, Fei Z, Hu J, Dyson PJ. Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa. Green Chem. 2007;9:1191–7.

    Article  CAS  Google Scholar 

  18. Frade RF, Matias A, Branco LC, Afonso CA, Duarte CM. Effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines. Green Chem. 2007;9:873–7.

    Article  CAS  Google Scholar 

  19. García-Lorenzo A, Tojo E, Tojo J, Teijeira M, Rodríguez-Berrocal FJ, González MP, et al. Cytotoxicity of selected imidazolium-derived ionic liquids in the human Caco-2 cell line. Sub-structural toxicological interpretation through a QSAR study. Green Chem. 2008;10:508–16.

    Article  CAS  Google Scholar 

  20. Jodynis-Liebert J, Nowicki M, Murias M, Adamska T, Ewertowska M, Kujawska M, et al. Cytotoxicity, acute and subchronic toxicity of ionic liquid, didecyldimethylammonium saccharinate, in rats. Regul Toxicol Pharmacol. 2010;57:266–73.

    Article  CAS  PubMed  Google Scholar 

  21. Pham TPT, Cho CW, Vijayaraghavan K, Min J, Yun YS. Effect of imidazolium-based ionic liquids on the photosynthetic activity and growth rate of Selenastrum capricornutum. Environ Toxicol Chem. 2008;27:1583–9.

    Article  CAS  PubMed  Google Scholar 

  22. Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L. Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol Environ Saf. 2009;72:1170–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar M, Trivedi N, Reddy C, Jha B. Toxic effects of imidazolium ionic liquids on the green seaweed Ulva lactuca: oxidative stress and DNA damage. Chem Res Toxicol. 2011;24:1882–90.

    Article  CAS  PubMed  Google Scholar 

  24. Larson JH, Frost PC, Lamberti GA. Variable toxicity of ionic liquid–forming chemicals to Lemna mino and the influence of dissolved organic matter. Environ Toxicol. 2008;27:676–81.

    Article  CAS  Google Scholar 

  25. Matzke M, Stolte S, Arning J, Uebers U, Filser J. Imidazolium based ionic liquids in soils: effects of the side chain length on wheat (Triticum aestivum) and cress (Lepidium sativum) as affected by different clays and organic matter. Green Chem. 2008;10:584–91.

    Article  CAS  Google Scholar 

  26. Pham TPT, Cho C-W, Yun Y-S. Environmental fate and toxicity of ionic liquids: a review. Water Res. 2010;44:352–72.

    Article  CAS  PubMed  Google Scholar 

  27. Wells AS, Coombe VT. On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org Process Res Dev. 2006;10:794–8.

    Article  CAS  Google Scholar 

  28. Bernot RJ, Kennedy EE, Lamberti GA. Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta. Environ Toxicol Chem. 2005;24:1759–65.

    Article  CAS  PubMed  Google Scholar 

  29. Swatloski RP, Holbrey JD, Memon SB, Caldwell GA, Caldwell KA, Rogers RD. Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids. ChemComm. 2004;6:668–9.

  30. Costello DM, Brown LM, Lamberti GA. Acute toxic effects of ionic liquids on zebra mussel (Dreissena polymorpha) survival and feeding. Green Chem. 2009;11:548–53.

    Article  CAS  Google Scholar 

  31. Zhang C, Zhu L, Wang J, Wang J, Zhou T, Xu Y, et al. The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio). Ecotoxicol Environ Saf. 2017;140:235–40.

    Article  CAS  PubMed  Google Scholar 

  32. Li X-Y, Miao X-Q, Zhang L-F, Wang J-J. Immunotoxicity of 1-methyl-3-octylimidazolium bromide on brocarded carp (Cyprinus carpio L.). Ecotoxicol Environ Saf. 2012;75:180–6.

    Article  CAS  PubMed  Google Scholar 

  33. Li XY, Zeng SH, Zhang WH, Liu L, Ma S, Wang JJ. Acute toxicity and superficial damage to goldfish from the ionic liquid 1-methyl-3-octylimidazolium bromide. Environ Toxicol. 2013;28:207–14.

    Article  PubMed  CAS  Google Scholar 

  34. Li X-Y, Zhou J, Yu M, Wang J-J, Pei YC. Toxic effects of 1-methyl-3-octylimidazolium bromide on the early embryonic development of the frog Rana nigromaculata. Ecotoxicol Environ Saf. 2009;72:552–6.

    Article  CAS  PubMed  Google Scholar 

  35. Landry T, Brooks K, Poche D, Woolhiser M. Acute toxicity profile of 1-butyl-3-methylimidazolium chloride. Bull Environ Contam Toxicol. 2005;74:559–65.

    Article  CAS  PubMed  Google Scholar 

  36. Bailey MM, Townsend MB, Jernigan PL, Sturdivant J, Hough-Troutman WL, Rasco JF, et al. Developmental toxicity assessment of the ionic liquid 1-butyl-3-methylimidazolium chloride in CD-1 mice. Green Chem. 2008;10:1213–7.

    Article  CAS  Google Scholar 

  37. Arning J, Stolte S, Böschen A, Stock F, Pitner W-R, Welz-Biermann U, et al. Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase. Green Chem. 2008;10:47–58.

    Article  CAS  Google Scholar 

  38. Stock F, Hoffmann J, Ranke J, Störmann R, Ondruschka B, Jastorff B. Effects of ionic liquids on the acetylcholinesterase–a structure–activity relationship consideration. Green Chem. 2004;6:286–90.

    Article  CAS  Google Scholar 

  39. Maddali K, Kumar V, Marchand C, Pommier Y, Malhotra SV. Biological evaluation of imidazolium-and ammonium-based salts as HIV-1 integrase inhibitors. MedChemComm. 2011;2:143–50.

    Article  CAS  Google Scholar 

  40. Attri P, Venkatesu P, Kumar A. Activity and stability of α-chymotrypsin in biocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate. Phys Chem Chem Phys. 2011;13:2788–96.

    Article  CAS  PubMed  Google Scholar 

  41. Składanowski A, Stepnowski P, Kleszczyński K, Dmochowska B. AMP deaminase in vitro inhibition by xenobiotics: a potential molecular method for risk assessment of synthetic nitro-and polycyclic musks, imidazolium ionic liquids and N-glucopyranosyl ammonium salts. Environ Toxicol Pharmacol. 2005;19:291–6.

    Article  PubMed  CAS  Google Scholar 

  42. Ge H-L, Liu S-S, Zhu X-W, Liu H-L, Wang L-J. Predicting hormetic effects of ionic liquid mixtures on luciferase activity using the concentration addition model. Environ Sci Technol. 2011;45:1623–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kumari M, Maurya JK, Tasleem M, Singh P, Patel R. Probing HSA-ionic liquid interactions by spectroscopic and molecular docking methods. J Photochem Photobiol B. 2014;138:27–35.

    Article  CAS  PubMed  Google Scholar 

  44. Sudlow G, Birkett DJ, Wade DN. Spectroscopic techniques in the study of protein binding. A fluorescence technique for the evaluation of the albumin binding and displacement of warfarin and warfarin-alcohol. Clin Exp Pharmacol Physiol. 1975;2:129–40.

    Article  CAS  PubMed  Google Scholar 

  45. Huang R, Zhang S, Pan L, Li J, Liu F, Liu H. Spectroscopic studies on the interactions between imidazolium chloride ionic liquids and bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc. 2013;104:377–82.

    Article  CAS  PubMed  Google Scholar 

  46. Yan H, Wu J, Dai G, Zhong A, Chen H, Yang J, et al. Interaction mechanisms of ionic liquids [Cnmim] Br (n = 4, 6, 8, 10) with bovine serum albumin. J Lumin. 2012;132:622–8.

    Article  CAS  Google Scholar 

  47. Egorova KS, Ananikov VP. Toxicity of ionic liquids: eco (cyto) activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem. 2014;7:336–60.

    Article  CAS  PubMed  Google Scholar 

  48. Bauer A. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol. 1966;45:149–58.

    Article  Google Scholar 

  49. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.

    Article  CAS  PubMed  Google Scholar 

  50. Surewicz WK, Mantsch HH, Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993;32:389–94.

    Article  CAS  PubMed  Google Scholar 

  51. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17:57–61.

    CAS  PubMed  Google Scholar 

  52. Berman H, Battistuz T, Bhat T, Bluhm W, Bourne P, Burkhardt K, et al. The protein data bank. Acta Crystallogr D Biol Crystallogr. 2002;58:899–907.

    Article  PubMed  CAS  Google Scholar 

  53. BIOVIA Discovery Studio San Diego: Dassault Systèmes. http://accelrys.com/products/discovery-studio/ Accessed November 2016.

  54. MarvinSketch Budapest, Hungary: ChemAxon Ltd. http://www.chemaxon.com/products/marvin/marvinsketch/ Accessed November 2016.

  55. Stewart JJP. MOPAC2016 colorado springs. CO: Stewart Computational Chemistry; 2016. http://openmopac.net/.

    Google Scholar 

  56. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Passino DRM, Smith SB. Acute bioassays and hazard evaluation of representative contaminants detected in Great Lakes fish. Environ Toxicol Chem. 1987;6:901–7.

    Article  CAS  Google Scholar 

  58. Material Safety Data Sheet of Cetylpyridinium Chloride, monohydrate according to Regulation (EC) No 1272/2008, 29 CFR 1910.1200 and the Globally Harmonized System. Indianapolis, IN: Vertellus LLC; 2016.

  59. EFSA Panel on Biological Hazards (BIOHAZ). Scientific opinion on the evaluation of the safety and efficacy of Cecure® for the removal of microbial surface contamination of raw poultry products. EFSA J. 2012;10:2612.

    Google Scholar 

  60. Abu Teir M, Ghithan J, Abu-Taha M, Darwish S, Abu-Hadid M. Spectroscopic approach of the interaction study of ceftriaxone and human serum albumin. J Biophys Struct Biol. 2014;6:1–12.

    Article  CAS  Google Scholar 

  61. Cui F, Qin L, Zhang G, Liu X, Yao X, Lei B. A concise approach to 1, 11-didechloro-6-methyl-4′-O-demethyl rebeccamycin and its binding to human serum albumin: Fluorescence spectroscopy and molecular modeling method. Bioorg Med Chem. 2008;16:7615–21.

    Article  CAS  PubMed  Google Scholar 

  62. Gelamo EL, Tabak M. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim Acta A Mol Biomol Spectrosc. 2000;56:2255–71.

    Article  Google Scholar 

  63. Liu Y, Cao Z, Wang J, Zong W, Liu R. The interaction mechanism between anionic or cationic surfactant with HSA by using spectroscopy, calorimetry and molecular docking methods. J Mol Liq. 2016;224:1008–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria M. Trush.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or in stitutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trush, M.M., Semenyuta, I.V., Hodyna, D. et al. Functionalized imidazolium-based ionic liquids: biological activity evaluation, toxicity screening, spectroscopic, and molecular docking studies. Med Chem Res 29, 2181–2191 (2020). https://doi.org/10.1007/s00044-020-02631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02631-3

Keywords

Navigation