Skip to main content

Advertisement

Log in

Design, synthesis and biological evaluation of novel 1,5-disubstituted isatin derivatives as antitumor agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Isatin (1H-indole-2,3-dione) was reported to possess anticancer activities through its effect on tumor proliferation, apoptosis, and metastasis in vitro and in vivo. Here, we described the synthesis of a novel series of 1,5-disubstituted isatin derivatives with 2-indolinone scaffold as antitumor agents. Most of the synthesized compounds revealed potent antiproliferative effects in mantle cell lymphoma (MCL) cell lines, among which 7l possessed promising activities with IC50 values ranging from 0.4 to 1.3 μM. Following flow cytometric analysis, compound 7l efficiently arrested the cell cycle at G2/M phase, and induced apoptosis. Thus, this study shows promise in therapeutics of 1,5-disubstituted isatin derivatives in MCL and provides novel potential and efficient antitumor agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16:2129–44.

    Article  Google Scholar 

  2. Green DR, Fitzgerald P. Just so stories about the evolution of apoptosis. Curr Biol. 2016;26:R620–R627.

    Article  CAS  Google Scholar 

  3. Cheng XR, James EFJ. Apoptosis propagates through the cytoplasm as trigger waves. Science. 2018;361:607–12.

    Article  CAS  Google Scholar 

  4. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833:3481–98.

    Article  CAS  Google Scholar 

  5. Plati J, Bucur O, Khosravi-Far R. Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb). 2011;3:279–96.

    Article  CAS  Google Scholar 

  6. Elkholi R, Renault TT, Serasinghe MN, Chipuk JE. Putting the pieces together: how is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metab. 2014;2:16.

    Article  Google Scholar 

  7. Mukae N, Yokoyama H, Yokokura T, Sakoyama Y, Nagata S. Activation of the innate immunity in drosophila by endogenous chromosomal DNA that escaped apoptotic degradation. Genes Dev. 2002;16:2662–71.

    Article  CAS  Google Scholar 

  8. Pfeffer CM, Singh ATK. Apoptosis: a target for anticancer therapy. Int J Mol Sci. 2018;19:448.

    Article  Google Scholar 

  9. Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.

    Article  CAS  Google Scholar 

  10. Ruan J. Molecular profiling and management of mantle cell lymphoma. Hematol Am Soc Hematol Educ Program 2019;2019:30–40.

    Article  Google Scholar 

  11. Rule S. The modern approach to mantle cell lymphoma. Hematol Oncol. 2019;37:66–69.

    Article  CAS  Google Scholar 

  12. Xu DM, Liang JH, Wang L, Zhu HY, Xia Y, Fan L, et al. 25-Hydroxy vitamin D deficiency predicts inferior prognosis in mantle cell lymphoma. J Cancer Res Clin Oncol. 2020;146:1003–9.

    Article  CAS  Google Scholar 

  13. Maddocks K. Update on mantle cell lymphoma. Blood. 2018;132:1647–56.

    Article  CAS  Google Scholar 

  14. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8:603–19.

    Article  CAS  Google Scholar 

  15. Chung C. Driving toward precision medicine for b cell lymphomas: targeting the molecular pathogenesis at the gene level. J Oncol Pharm Pr. 2020;26:943–66.

    Article  CAS  Google Scholar 

  16. Shi CS, Kehrl JH. Bcl-2 regulates pyroptosis and necroptosis by targeting BH3-like domains in GSDMD and MLKL. Cell Death Disco. 2019;5:151.

    Article  CAS  Google Scholar 

  17. Jullien M, Gomez-Bougie P, Chiron D, Touzeau C. Restoring apoptosis with BH3 mimetics in mature B-cell malignancies. Cells. 2020;9:717.

    Article  CAS  Google Scholar 

  18. Qiu LN, Liu JL, Wang ZN, Chen SF, Hu WX, Huang Q, et al. ZGDHu-1 promotes apoptosis of mantle cell lymphoma cells. Oncotarget. 2017;8:11659–75.

    Article  Google Scholar 

  19. Wang JD, Katz SG, Morgan EA, Yang DT, Pan XL, Xu ML. Proapoptotic protein BIM as a novel prognostic marker in mantle cell lymphoma. Hum Pathol. 2019;93:54–64.

    Article  CAS  Google Scholar 

  20. Sun WY, Zhang L, Hou L, Ju CX, Zhao SM, Wei YY. Isatin inhibits SH-SY5Y neuroblastoma cell invasion and metastasis through MAO/HIF-1α/CXCR4 signaling. Anticancer Drugs. 2017;28:645–53.

    Article  CAS  Google Scholar 

  21. Evdokimov NM, Magedov IV, McBrayer D, Kornienko A. Isatin derivatives with activity against apoptosis-resistant cancer cells. Bioorg Med Chem Lett. 2016;26:1558–60.

    Article  CAS  Google Scholar 

  22. De Moraes Gomes PAT, Pena LJ, Leite ACL. Isatin derivatives and their antiviral properties against arboviruses: a review. Mini Rev Med Chem. 2019;19:56–62.

    Article  Google Scholar 

  23. Guo H. Isatin derivatives and their anti-bacterial activities. Eur J Med Chem. 2019;164:678–88.

    Article  CAS  Google Scholar 

  24. Meleddu R, Distinto S, Corona A, Tramontano E, Bianco G, Melis C, et al. Isatin thiazoline hybrids as dual inhibitors of HIV-1 reverse transcriptase. J Enzym Inhib Med Chem. 2017;32:130–6.

    Article  CAS  Google Scholar 

  25. Nguyen JT, Wells JA. Direct activation of the apoptosis machinery as a mechanism to target cancer cells. Proc Natl Acad Sci USA. 2003;100:7533–8.

    Article  CAS  Google Scholar 

  26. Farivar TN, Najafipour R, Johari P. Nano-drug delivery of apoptosis activator 2 to AGS cells by liposomes conjugated with Anti-TROP2 antibody. N Am J Med Sci. 2012;4:582–5.

    Article  Google Scholar 

  27. Li PZ, Tan YM, Liu GY, Liu Y, Liu JZ, Yin YZ, et al. Synthesis and biological evaluation of novel indoline-2,3-dione derivatives as antitumor agents. Drug Disco Ther. 2014;8:110–106.

    Article  Google Scholar 

  28. Gayko U, Fung M, Clow F, Sun S, Faust E, Price S, et al. Development of the bruton’s tyrosine kinase inhibitor ibrutinib for B cell malignancies. Ann N Y Acad Sci. 2015;1358:82–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Project of Shandong Province, China (Nos. 2017CXGC1401 and 2019GSF108038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guisen Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, H., Zhang, Z., Liu, Y. et al. Design, synthesis and biological evaluation of novel 1,5-disubstituted isatin derivatives as antitumor agents. Med Chem Res 29, 2170–2180 (2020). https://doi.org/10.1007/s00044-020-02627-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02627-z

Keywords

Navigation