Skip to main content

Advertisement

Log in

A convenient synthesis, reactions and biological evaluation of novel pyrazolo[3,4-b]selenolo[3,2-e]pyrazine heterocycles as potential anticancer and antimicrobial agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A novel series of 5-amino-6-substituted-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]selenolo[3,2-e]pyrazines (3a–e) was synthesized by the reaction of the chloro pyrazolo[3,4-b]pyrazine carbonitrile 1 with selenium element in the presence of sodium borohydride and ethanol, followed by the reaction with α-halo alkylating agents to produce the selanyl-alkylated derivatives 2a–e. The latter compounds underwent Thorpe-Ziegler cyclization upon heating with ethanolic sodium ethoxide solution to afford the target selenolopyrazolopyrazine compounds. The 5-amino-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]selenolo[3,2-e]pyrazine-6-carboxamide (3b) was used as a versatile precursor for synthesis of new heterocyclic fused to the pyrazoloselenolopyrazine moiety namely: pyrimidine and imidazopyrimidine. Assignment of the chemical structures for the newly synthesized compounds was confirmed on the bases of elemental and spectral techniques including FT-IR, 1H NMR, 13C NMR, and mass spectra. Furthermore, certain compounds were screened for their antimicrobial activity which revealed remarkable activities against various pathogenic strains of bacteria and fungi. Alternatively, some of these compounds exhibited promising anticancer action against some colon and breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Scheme 4
Scheme 5
Fig. 3

Similar content being viewed by others

References

  1. Myadaraboina S, Alla M, Saddanapu V, Bommena VR, Addlagatta A. Structure activity relationship studies of imidazo[1,2-a]pyrazine derivatives against cancer cell lines. Eur J Med Chem. 2010;45:5208–16. https://doi.org/10.1016/j.ejmech.2010.08.035.

    Article  CAS  PubMed  Google Scholar 

  2. Ahmad M, Hameed S, Tahir MN, Israr M, Anwar M, Shah MA, et al. Synthesis, characterization and biological evaluation of some 5- methyl pyrazine carbohydrazide based hydrazones. Pak J Pharm Sci. 2016;29:811–7.

    CAS  PubMed  Google Scholar 

  3. Farghaly A, Esmail S, Abdel-Zaher A, Abdel-Hafez A, El-Kashef H. Synthesis and anticonvulsant activity of some new pyrazolo[3,4-b]pyrazines and related heterocycles. Bioorg Med Chem. 2014;22:2166–75. https://doi.org/10.1016/j.bmc.2014.02.019.

    Article  CAS  PubMed  Google Scholar 

  4. El-Kashef HS, El-Emary TI, Gasquet M, Timon-David P, Maldonado J, Vanelle P. New pyrazolo[3,4-b]pyrazines: synthesis and biological activity. Pharmazie. 2000;55:572–6.

    CAS  PubMed  Google Scholar 

  5. Imaizumi K, Sado T. Bone metabolism improvers containing pyrazolopyrazine, Jpn. Kokai Tokkyo Koho JP 06 80 570 [9480 5701 (Cl. AGlK31/495). Chem Abstr. 1994;121:91797w.

    Google Scholar 

  6. Sado T, Inoue A. Preparation of lH-pyrazolo[3,4-blpyrazines as blood platelet aggregation inhibitors and antiinflammatories, Jpn. Kokai Tokkyo Koho JP 02 101078 [90 101781 (Cl. C07D487/04). Chem Abstr. 1990;113:78422k.

    Google Scholar 

  7. Vaijayanthi SP, Mathiyalagan N. Antibacterial, antifungal, antioxidant, anti-inflammatory and anti-hypertensive activities of Nchloropyrazinamide. Int Lett Chem Phys Astron. 2014;26:1–8. https://doi.org/10.18052/www.scipress.com/ILCPA.26.1.

    Article  Google Scholar 

  8. El-Emary TI, Kamal El-Dean AM, El-Kashef HS. Facile synthesis of some new pyrazolo[3,4- b]pyrazines and their antifungal activity. IL Farmaco. 1998;53:383–8. https://doi.org/10.1016/S0014-827X(98)00014-7.

    Article  CAS  Google Scholar 

  9. Da Sliva YKC, Augusto CV, Barbosa MLC, Melo GMA, de Queiroz AC, Dias TLMF, et al. Synthesis and pharmacological evaluation of pyrazine N-acylhydrazone derivatives designed as novel analgesic and anti-inflammatory drug candidates. Bioorg Med Chem. 2010;18:5007–15. https://doi.org/10.1016/j.bmc.2010.06.002.

    Article  CAS  Google Scholar 

  10. Gondek E, Nizio J, Danel A, Szlachcic P, Plucinski K, Sanetra J, et al. Influence of chromophore dipole moments in parameters of organic light emitting devices based on phenyl and methyl modified pyrazoloquinoline. Spectrochim Acta A. 2010;75:1501–5.

    Article  CAS  Google Scholar 

  11. Yang Z, Zhang K, Gong F, Li S, Chen J, Ma JS, et al. A highly selective fluorescent sensor for fluoride anion based on pyrazole derivative: naked eye “no–yes” detection. J Photochem Photobiol A. 2011;217:29–34. https://doi.org/10.1016/j.jphotochem.2010.09.012.

    Article  CAS  Google Scholar 

  12. Coe BJ, Fielden J, Foxon SP, Asselberghs I, Clays K, Brunschwig BS. Two-dimensional, pyrazine-based nonlinear optical chromophores with Ruthenium (II) ammine electron donors. Inorg Chem. 2010;49:10718–26. https://doi.org/10.1021/ic1019197.

    Article  CAS  PubMed  Google Scholar 

  13. Takamizawa S, Nataka E, Akatsuka T, Miyake R, Kakizaki Y, Takeuchi H, et al. Crystal transformation and host molecular motions in CO2 adsorption process of a metal benzoate pyrazine (M(II) = Rh, Cu). J Am Chem Soc. 2010;132:3783–92. https://doi.org/10.1021/ja9091598.

    Article  CAS  PubMed  Google Scholar 

  14. Rangnekar DW, Dhamnaskar SV. Synthesis of 5-Hetarylpyrazolo[3,4-b] pyrazines and their use as disperse dyes for polyester fibers. Dyes Pigments. 1990;13:241–50. https://doi.org/10.1016/0143-7208(90)85023-H.

    Article  CAS  Google Scholar 

  15. Chen JC, Chen QH, Guo Q, Ruan S, Ruan H, He GQ, et al. Simultaneous determination of acetoin and tetramethylpyrazine in traditional vinegars by HPLC method. Food Chem. 2010;122:1247–52. https://doi.org/10.1016/j.foodchem.2010.03.072.

    Article  CAS  Google Scholar 

  16. Prabhu CP, Phadnis PP, Wadawale AP, Priyadarsini KI, Jain VK. Synthesis, characterization, structures and antioxidant activity of nicotinoyl based organo-selenium compounds. J. Organo-Met Chem. 2012;713:42–50. https://doi.org/10.1016/j.jorganchem.2012.04.014.

    Article  CAS  Google Scholar 

  17. Gajdács M, Handzlik J, Sanmartín C, Álvarez ED, Spengler G. Organo- selenium compounds as antitumor agents: in vitro evaluation on a colon cancer model system. Acta Pharm Hungarica. 2018;88:59–65.

    Google Scholar 

  18. Mugesh G, Du Mont WW, Sies H. Chemistry of biollogically important synthetic organoselenium compounds. Chem Rev. 2001;101:2125–79. https://doi.org/10.1021/cr000426w.

    Article  CAS  PubMed  Google Scholar 

  19. Radhakrishna PM, Sharadamma KC, Vagdevi HM, Abhilekha PM, Mubeen SR, Nischal K. Synthesis and antibacterial activity of novel organoselenium compounds. Int J Chem. 2010;2:149–54. https://doi.org/10.5539/ijc.v2n2p149.

    Article  CAS  Google Scholar 

  20. Ratushnaya EV, Kirova YI, Suchkov MA, Drevko BI, Borodulin VB. Synthesis and antibbacterial activity of organoselenium compounds. Pharm Chem J. 2002;36:652–3.

    Article  CAS  Google Scholar 

  21. Jacob C, Giles G, Fry F. US Pat wo 200 4047925; 2004.

  22. Santi C, Santoro S, Battistelli B. Organoselenium compounds as catalysts in nature and laboratory. Curr Org Chem. 2010;14:2442–62. https://doi.org/10.2174/138527210793358231.

    Article  CAS  Google Scholar 

  23. Raffa D, Maggio B, Raimondi MV, Cascioferro S, Plescia F, Cancemi G, et al. Recent advanced in bioactive systems containing pyrazole fused with a five membered heterocycle. Eur J Med Chem. 2015;97:732–46. https://doi.org/10.1016/j.ejmech.2014.12.023.

    Article  CAS  PubMed  Google Scholar 

  24. Chou LC, Huang LJ, Hsu MH, Fang MC, Yang JS, Zhuang SH, et al. Synthesis of 1-benzyl-3-(5-hydroxymethyl-2- furyl)selenolo[3,2-c]pyrazole derivatives as new anticancer agents. Eur J Med Chem. 2010;45:1395–402. https://doi.org/10.1016/j.ejmech.2009.12.039.

    Article  CAS  PubMed  Google Scholar 

  25. Abd ul‐Malik MA, Zaki RM, Kamal El‐Dean AM, Radwan ShM. A concise review on the synthesis and reactions of pyrazolopyrazine heterocycles. J Heterocycl Chem. 2018;55:1828–53. https://doi.org/10.1002/jhet.3225.

    Article  CAS  Google Scholar 

  26. Kamal El-Dean AM, Radwan ShM, Zaki RM, Abd ul-Malik MA. Efficient synthesis of some novel furo[3,2-e]pyrazolo[3,4-b]pyrazines and related heterocycles. Syn Comm. 2018;48:395–412. https://doi.org/10.1080/00397911.2017.1403626.

    Article  CAS  Google Scholar 

  27. Zaki RM, El-Dean AMK, Radwan ShM, Abd ul-Malik MA. A facile synthesis, reactions, and spectral characterization of some novel thieno[3,2‐e] pyrazolo[3,4‐b]pyrazine compounds. J Chin Chem Soc. 2018;65:1407–14. https://doi.org/10.1002/jccs.201800050.

    Article  CAS  Google Scholar 

  28. Zaki RM, El-Ossaily YA, Geies AA. A convenient synthesis, reactions and biological studies of some novel selenolo[2,3-c]pyrazole compounds as anti- microbial and anti-inflammatory agents. Med Chem Res. 2016;25:893–908. https://doi.org/10.1007/s00044-016-1536-8.

    Article  CAS  Google Scholar 

  29. Zaki RM, El‐Ossaily YA, Geies AA. A convenient green synthetic approach to the synthesis of novel bioactive selenolo[2,3‐c]pyrazoles as antibacterial and antifungal agents. J Heterocycl Chem. 2020;57:653–62. https://doi.org/10.1002/jhet.3805.

    Article  CAS  Google Scholar 

  30. Zaki RM, Kamal El-Dean AM, Radwan ShM, Abd ul-Malik MA. A convenient synthesis, reactions and biological activities of some novel thieno[3,2-e]pyrazolo[3,4-b]pyrazine compounds as anti-microbial and anti-inflammatory agents. Curr Org Syn. 2018;15:863–71. https://doi.org/10.2174/1570179415666180607105627.

    Article  CAS  Google Scholar 

  31. Zaki RM, Kamal El-Dean AM, Radwan ShM, Abd ul-Malik MA. Efficient synthesis, reactions, and biological activities of new thieno and furopyrazolo[3,4‐b]pyrazines and their related heterocycles. J Chin Chem Soc. 2020;67:658–73. https://doi.org/10.1002/jccs.201900056.

    Article  CAS  Google Scholar 

  32. Lee KW, Lee YS. Peptide Synthesis with Polymer Bound Active Ester. I. Rapid Synthesis of Peptides Using Polymer Bound 1-Phenyl-3-methyl-4-oximinopyrazole. Bull Korean Chem Soc. 1989;10:331–5.

    CAS  Google Scholar 

  33. Mohr E. J Prakt Chem. 1909;79:26.

    Google Scholar 

  34. Kwon-Chung KJ, Bennett JE. Principles of antifungal therapy. Med Mycol. 1992:81–102.

  35. Al-Doory Y. Laboratory medical mycology. 20. Philadelphia, USA: Lea and Febiger; 1980. p. 219–41.

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. Dr./Etaify A. Bakhite, Chairman of Chemistry Department for the facilities provided to us, Also, thanks was extended to all the staff members of Chemistry Department for their sincere effort during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remon M. Zaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaki, R.M., Abdul-Malik, M.A., Saber, S.H. et al. A convenient synthesis, reactions and biological evaluation of novel pyrazolo[3,4-b]selenolo[3,2-e]pyrazine heterocycles as potential anticancer and antimicrobial agents. Med Chem Res 29, 2130–2145 (2020). https://doi.org/10.1007/s00044-020-02635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02635-z

Keywords

Navigation