Skip to main content
Log in

Influence of additives on poured earth strength development

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the influence of the deflocculation/flocculation process on the cohesion of clay-based materials by investigating the changes in their internal structure. Indeed, as the cohesion of earth materials finds its origin in the capillary forces between clay particles, strongly linked to the porosity of the material, the relationship between the additives, porosity and compressive strength must be understood. The fresh state properties and hardened state properties of the clay mortars, mix designed with different types of mineral additives (phosphate-based as a dispersant and calcium and magnesium based as a coagulant), were determined and compared to those of their micro- and macrostructure based on thermal gravimetric analysis. The results show that the dispersant has a strong impact on the compression strength of clay-based materials due to the optimized organization of the clay particles during the deflocculation step, leading to an increase in the capillary force intensity. Experiments confirm that coagulants decrease the global porosity and compression strength according to their solubility and reaction time. When the reaction between the dispersant and the coagulant is slow, the benefit of the dispersant on clay platelet organization, which influences the mortar stiffness and global porosity, is maintained, and the final strength is high. The TGA confirms that the coagulant has no impact on the microporosity and that the earth material returns to its initial state. Finally, guidelines for mixing and pouring can be highlighted to maximize the strength of poured earth without the addition of hydraulic binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Swilling M, Hajer M, Baynes T et al (2018) The weight of cities: resource requirements of future urbanization

  2. Bajželj B, Allwood JM, Cullen JM (2013) Designing climate change mitigation plans that add up. Environ Sci Technol 47:8062–8069. https://doi.org/10.1021/es400399h

    Article  Google Scholar 

  3. UN Environment (2017) Global Status Report 2017—towards a zero-emission, efficient, and resilient buildings and construction sector

  4. Ioannidou D, Meylan G, Sonnemann G, Habert G (2017) Is gravel becoming scarce? Evaluating the local criticality of construction aggregates. Resour Conserv Recycl 126:25–33. https://doi.org/10.1016/j.resconrec.2017.07.016

    Article  Google Scholar 

  5. Heeren N, Mutel CL, Steubing B et al (2015) Environmental impact of buildings—What matters? Environ Sci Technol 49:9832–9841. https://doi.org/10.1021/acs.est.5b01735

    Article  Google Scholar 

  6. Cabernard L, Pfister S, Hellweg S (2019) A new method for analyzing sustainability performance of global supply chains and its application to material resources. Sci Total Environ 684:164–177. https://doi.org/10.1016/j.scitotenv.2019.04.434

    Article  Google Scholar 

  7. Celentano G, Escamilla EZ, Göswein V, Habert G (2019) A matter of speed: the impact of material choice in post-disaster reconstruction. Int J Disaster Risk Reduct 34:34–44. https://doi.org/10.1016/j.ijdrr.2018.10.026

    Article  Google Scholar 

  8. Habert G (2013) Assessing the environmental impact of conventional and “green” cement production. In: Eco-efficient construction and building materials: life cycle assessment (LCA), Eco-Labelling and Case Studies

  9. Dahlbo H, Bachér J, Lähtinen K et al (2015) Construction and demolition waste management—a holistic evaluation of environmental performance. J Clean Prod. https://doi.org/10.1016/j.jclepro.2015.02.073

    Article  Google Scholar 

  10. Société du Grand Paris (2017) Schéma de gestion et de valorisation des déblais

  11. Llatas C (2011) A model for quantifying construction waste in projects according to the European waste list. Waste Manag. https://doi.org/10.1016/j.wasman.2011.01.023

    Article  Google Scholar 

  12. Vieira CS, Pereira PM (2015) Use of recycled construction and demolition materials in geotechnical applications: a review. Resour Conserv Recycl

  13. Rubli S, Schneider T Statische model. http://www.kar-modell.ch/resultat_statMod.html

  14. Hamard E, Lemercier B, Cazacliu B et al (2018) A new methodology to identify and quantify material resource at a large scale for earth construction—application to cob in Brittany. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.03.097

    Article  Google Scholar 

  15. Gasnier H (2019) Construire en terres d’excavation, un enjeu pour la ville durable. Université Grenoble Alpes

  16. Pacheco-Torgal F, Jalali S (2012) Earth construction: lessons from the past for future eco-efficient construction. Constr Build, Mater

    Google Scholar 

  17. Shukla A, Tiwari GN, Sodha MS (2009) Embodied energy analysis of adobe house. Renew Energy. https://doi.org/10.1016/j.renene.2008.04.002

    Article  Google Scholar 

  18. Morel JC, Mesbah A, Oggero M, Walker P (2001) Building houses with local materials: means to drastically reduce the environmental impact of construction. Build Environ. https://doi.org/10.1016/S0360-1323(00)00054-8

    Article  Google Scholar 

  19. Minas C, Carpenter J, Freitag J et al (2019) Foaming of recyclable clays into energy-efficient low-cost thermal insulators. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.9b03617

    Article  Google Scholar 

  20. Ouellet-Plamondon CM, Habert G (2016) Self-Compacted Clay based Concrete (SCCC): proof-of-concept. J Clean Prod. https://doi.org/10.1016/j.jclepro.2015.12.048

    Article  Google Scholar 

  21. Lefebvre P, BC Architects & Studies (2018) The act of building. Flämische Architekturinstitut (VAi), Antwerp, Belgium

  22. Parra-Saldivar ML, Batty W (2006) Thermal behaviour of adobe constructions. Build Environ. https://doi.org/10.1016/j.buildenv.2005.07.021

    Article  Google Scholar 

  23. Allinson D, Hall M (2010) Hygrothermal analysis of a stabilised rammed earth test building in the UK. Energy Build. https://doi.org/10.1016/j.enbuild.2009.12.005

    Article  Google Scholar 

  24. Hall MR, Casey S (2012) Hygrothermal behaviour and occupant comfort in modern earth buildings. In: Modern earth buildings: materials, engineering, constructions and applications

  25. Houben H, Guillaud H (1994) Earth construction: a comprehensive guide

  26. Zhang L, Gustavsen A, Jelle BP et al (2017) Thermal conductivity of cement stabilized earth blocks. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.06.047

    Article  Google Scholar 

  27. Morel JC, Charef R (2019) What are the barriers affecting the use of earth as a modern construction material in the context of circular economy? In: IOP conference series: earth and environmental science

  28. Kapfinger M, Sauer O (2015) Martin Rauch refined earth construction & design with rammed earth. Detail 160

  29. Hamard E, Cazacliu B, Razakamanantsoa A, Morel JC (2016) Cob, a vernacular earth construction process in the context of modern sustainable building. Build Environ

  30. Nagaraj HB, Sravan MV, Arun TG, Jagadish KS (2014) Role of lime with cement in long-term strength of Compressed Stabilized Earth Blocks. Int J Sustain Built Environ. https://doi.org/10.1016/j.ijsbe.2014.03.001

    Article  Google Scholar 

  31. Shubbar AA, Sadique M, Kot P, Atherton W (2019) Future of clay-based construction materials—a review. Constr Build Mater

  32. Bui QB, Morel JC, Hans S, Walker P (2014) Effect of moisture content on the mechanical characteristics of rammed earth. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2013.12.067

    Article  Google Scholar 

  33. Bui QB, Morel JC, Venkatarama Reddy BV, Ghayad W (2009) Durability of rammed earth walls exposed for 20 years to natural weathering. Build Environ. https://doi.org/10.1016/j.buildenv.2008.07.001

    Article  Google Scholar 

  34. Mohamad Nidzam R, Norsalisma I, Kinuthia JM (2016) Strength and environmental evaluation of stabilised Clay-PFA eco-friendly bricks. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2016.08.114

    Article  Google Scholar 

  35. Lavie Arsène MI, Frédéric C, Nathalie F (2020) Improvement of lifetime of compressed earth blocks by adding limestone, sandstone and porphyry aggregates. J Build Eng. https://doi.org/10.1016/j.jobe.2019.101155

    Article  Google Scholar 

  36. Walker P, Stace T (1997) Properties of some cement stabilised compressed earth blocks and mortars. Mater Struct Constr. https://doi.org/10.1007/bf02486398

    Article  Google Scholar 

  37. Landrou G, Brumaud C, Winnefeld F et al (2016) Lime as an anti-plasticizer for self-compacting clay concrete. Materials (Basel). https://doi.org/10.3390/ma9050330

    Article  Google Scholar 

  38. Pellenq RJM, Van Damme H (2004) Why does concrete set?: the nature of cohesion forces in hardened cement-based materials. MRS Bull. https://doi.org/10.1557/mrs2004.97

    Article  Google Scholar 

  39. Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science

  40. Kang N, Hwang H (2011) Study on high strengthening of an earth wall using earth and high-performance lime. In: TerrAsia 2011. International conference on earthen architecture, October 2011, Mokpo, Korea

  41. Moevus M, Fontaine L, Anger R, Doat P (2013) Projet: Béton d’Argile Environnemental (B.A.E.), final report

  42. Auroville (2015) Earth as a raw material. WwwEarth-AurovilleCom

  43. Imanzadeh S, Hibouche A, Jarno A, Taibi S (2018) Formulating and optimizing the compressive strength of a raw earth concrete by mixture design. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.12.088

    Article  Google Scholar 

  44. Imanzadeh S, Jarno A, Hibouche A et al (2020) Ductility analysis of vegetal-fiber reinforced raw earth concrete by mixture design. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117829

    Article  Google Scholar 

  45. Van Damme H, Houben H (2018) Earth concrete. Stabilization revisited. Cem Concr Res

  46. Gelardi G, Flatt RJ (2016) Working mechanisms of water reducers and superplasticizers. In: Science and technology of concrete admixtures

  47. Moevus M, Jorand Y, Olagnon C et al (2016) Earthen construction: an increase of the mechanical strength by optimizing the dispersion of the binder phase. Mater Struct Constr. https://doi.org/10.1617/s11527-015-0595-5

    Article  Google Scholar 

  48. Loginov M, Larue O, Lebovka N, Vorobiev E (2008) Fluidity of highly concentrated kaolin suspensions: influence of particle concentration and presence of dispersant. Colloids Surf Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2008.04.040

    Article  Google Scholar 

  49. Castellini E, Berthold C, Malferrari D, Bernini F (2013) Sodium hexametaphosphate interaction with 2:1 clay minerals illite and montmorillonite. Appl Clay Sci. https://doi.org/10.1016/j.clay.2013.08.031

    Article  Google Scholar 

  50. Perrot A, Rangeard D, Levigneur A (2016) Linking rheological and geotechnical properties of kaolinite materials for earthen construction. Mater Struct Constr. https://doi.org/10.1617/s11527-016-0813-9

    Article  Google Scholar 

  51. Landrou G, Brumaud C, Plötze ML et al (2018) A fresh look at dense clay paste: deflocculation and thixotropy mechanisms. Colloids Surf Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2017.12.029

    Article  Google Scholar 

  52. Pinel A, Jorand Y, Olagnon C et al (2017) Towards poured earth construction mimicking cement solidification: demonstration of feasibility via a biosourced polymer. Mater Struct Constr. https://doi.org/10.1617/s11527-017-1092-9

    Article  Google Scholar 

  53. Perrot A, Rangeard D, Menasria F, Guihéneuf S (2018) Strategies for optimizing the mechanical strengths of raw earth-based mortars. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.02.055

    Article  Google Scholar 

  54. Landrou G, Brumaud C, Habert G (2018) Influence of magnesium on deflocculated kaolinite suspension: mechanism and kinetic control. Colloids Surf Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2017.12.040

    Article  Google Scholar 

  55. Lagaly G, Ziesmer S (2003) Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Adv Colloid Interface Sci. https://doi.org/10.1016/S0001-8686(02)00064-7

    Article  Google Scholar 

  56. Tang Z, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater. https://doi.org/10.1038/nmat906

    Article  Google Scholar 

  57. Kpogbémabou D, Gridi-Bennadji F, Hoang LC et al (2014) Structural and microstructural studies of montmorillonite-based multilayer nanocomposites. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2013.10.037

    Article  Google Scholar 

  58. Mpofu P, Addai-Mensah J, Ralston J (2004) Flocculation and dewatering behaviour of smectite dispersions: effect of polymer structure type. Miner Eng. https://doi.org/10.1016/j.mineng.2003.11.010

    Article  Google Scholar 

  59. Landrou G (2018) Development of Self-compacting clay concrete. ETH Zurich

  60. Van Olphen H (1977) An introduction to clay colloid chemistry, for clay technologists, geologists, and soil scientists

  61. EN196-1 (2005) Methods of testing cement—Part 1: Determination of strength. Eur Stand

  62. Dzuy NQ, Boger DV (1985) Direct yield stress measurement with the vane method. J Rheol (N Y N Y). https://doi.org/10.1122/1.549794

    Article  Google Scholar 

  63. Saak AW, Jennings HM, Shah SP (2001) The influence of wall slip on yield stress and viscoelastic measurements of cement paste. Cem Concr Res. https://doi.org/10.1016/S0008-8846(00)00440-3

    Article  Google Scholar 

  64. Coussot P (2005) Rheometry of pastes, suspensions, and granular materials

  65. Nachbaur L, Mutin JC, Nonat A, Choplin L (2001) Dynamic mode rheology of cement and tricalcium silicate pastes from mixing to setting. Cem Concr Res. https://doi.org/10.1016/S0008-8846(00)00464-6

    Article  Google Scholar 

  66. Sedran T, De Larrard F, Le Guen L (2007) Détermination de la compacité des ciments et additions minérales à la sonde de Vicat. Bull des Lab des Ponts Chaussees

  67. Habert G, Choupay N, Escadeillas G et al (2009) Clay content of argillites: influence on cement based mortars. Appl Clay Sci. https://doi.org/10.1016/j.clay.2008.09.009

    Article  Google Scholar 

  68. Cheng K, Heidari Z (2017) Combined interpretation of NMR and TGA measurements to quantify the impact of relative humidity on hydration of clay minerals. Appl Clay Sci. https://doi.org/10.1016/j.clay.2017.04.006

    Article  Google Scholar 

  69. Kakali G, Perraki T, Tsivilis S, Badogiannis E (2001) Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl Clay Sci. https://doi.org/10.1016/S0169-1317(01)00040-0

    Article  Google Scholar 

  70. Obada DO, Dodoo-Arhin D, Dauda M et al (2017) The impact of kaolin dehydroxylation on the porosity and mechanical integrity of kaolin based ceramics using different pore formers. Results Phys. https://doi.org/10.1016/j.rinp.2017.07.048

    Article  Google Scholar 

  71. Brindley GW, Nakahira M (1959) The kaolinite‐mullite reaction series: II, metakaolin. J Am Ceram Soc. https://doi.org/10.1111/j.1151-2916.1959.tb14315.x

    Article  Google Scholar 

  72. Bellotto M, Gualtieri A, Artioli G, Clark SM (1995) Kinetic study of the kaolinite-mullite reaction sequence. Part I: kaolinite dehydroxylation. Phys Chem Miner. https://doi.org/10.1007/BF00202253

    Article  Google Scholar 

  73. Roussel N, Coussot P (2005) “Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow. J Rheol (N Y N Y). https://doi.org/10.1122/1.1879041

    Article  Google Scholar 

  74. ASTM C230 (2010) Standard specification for flow table for use in tests of hydraulic cement 1. Annu B ASTM Stand. https://doi.org/10.1520/C0230

    Article  Google Scholar 

  75. Lecomte A, Mechling JM, Diliberto C (2009) Compaction index of cement paste of normal consistency. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2009.05.005

    Article  Google Scholar 

  76. de Larrard F (1999) Concrete mixture proportioning: a scientific approach

  77. Roussel N (2006) A theoretical frame to study stability of fresh concrete. Mater Struct Constr. https://doi.org/10.1617/s11527-005-9036-1

    Article  Google Scholar 

  78. Sikorski D, Tabuteau H, de Bruyn JR (2009) Motion and shape of bubbles rising through a yield-stress fluid. J Nonnewton Fluid Mech. https://doi.org/10.1016/j.jnnfm.2008.11.011

    Article  Google Scholar 

  79. Ducloué L, Pitois O, Goyon J et al (2015) Rheological behaviour of suspensions of bubbles in yield stress fluids. J Nonnewton Fluid Mech. https://doi.org/10.1016/j.jnnfm.2014.10.003

    Article  Google Scholar 

  80. Mirzaagha S, Pasquino R, Iuliano E et al (2017) The rising motion of spheres in structured fluids with yield stress. Phys Fluids. https://doi.org/10.1063/1.4998740

    Article  Google Scholar 

  81. Nimmo JR (2004) Porosity and pore-size distribution. In: Encyclopedia of soils in the environment

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coralie Brumaud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardant, D., Brumaud, C. & Habert, G. Influence of additives on poured earth strength development. Mater Struct 53, 127 (2020). https://doi.org/10.1617/s11527-020-01564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-020-01564-y

Keywords

Navigation