Skip to main content
Log in

PSO-based online estimation of aerodynamic ground effect in the backstepping controller of quadrotor

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Stability of landing and forward flight of unmanned aerial vehicles near the ground is one of the challenging problems in the quadrotor control system. In real-time operation, when the rotary-wing vehicle flies close to the ground, the thrust increases are called ground effect. According to the flight and environmental conditions and the quality of ground surface, the aerodynamic ground effect is varied continuously. In this paper, a backstepping controller is designed and adjusted by using particle swarm optimization. Controller adjustment is referred to as the process of online estimation of the ground effect in various conditions. The stability analysis is performed and guaranteed by Lyapunov theory. The simulation results indicate that the proposed method is highly practical and capable of tracking the desired trajectory appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aich S, Ahuja C, Gupta T, Arulmozhivarman P (2014) Analysis of ground effect on multi-rotors. In: 2014 International conference on electronics, communication and computational engineering (ICECCE). IEEE, pp 236–241

  2. Bernard DDC, Riccardi F, Giurato M, Lovera M (2017) A dynamic analysis of ground effect for a quadrotor platform. IFAC-PapersOnLine 50(1):10311–10316

    Article  Google Scholar 

  3. Powers C, Mellinger D, Kushleyev A, Kothmann B, Kumar V (2013) Influence of aerodynamics and proximity effects in quadrotor flight. In: Desai J, Dudek G, Khatib O, Kumar V (eds) Experimental robotics. Springer tracts in advanced robotics, vol 88. Springer, Heidelberg, pp 289–302. https://doi.org/10.1007/978-3-319-00065-7_21

    Chapter  Google Scholar 

  4. Sanchez-Cuevas P, Heredia G, Ollero A (2017) Characterization of the aerodynamic ground effect and its influence in multirotor control. Int J Aerosp Eng 2017:1823056. https://doi.org/10.1155/2017/1823056

    Article  Google Scholar 

  5. Sharf I, Nahon M, Harmat A, Khan W, Michini M, Speal N, Trentini M, Tsadok T, Wang T (2014) Ground effect experiments and model validation with Draganflyer X8 rotorcraft. In: 2014 International conference on unmanned aircraft systems (ICUAS). IEEE, pp 1158–1166

  6. Aeronautical Research Council, Cheeseman IC, Bennett WE (1957) The effect of the ground on a helicopter rotor in forward flight. H.M. Stationery Office

  7. Curtiss H, Sun M, Putman W, Hanker E (1984) Rotor aerodynamics in ground effect at low advance ratios. J Am Helicopter Soc 29(1):48–55

    Article  Google Scholar 

  8. Griffiths D (2002) A study of dual-rotor interference and ground effect using a free-vortex wake model. In: AHS international, 58th annual forum proceedings. pp 592–612

  9. Liu L, Liu W, Cartes DA (2008) Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Eng Appl Artif Intell 21(7):1092–1100

    Article  Google Scholar 

  10. Tofighi EM, Mahdizadeh A, Feyzi MR (2013) Online estimation of induction motor parameters using a modified particle swarm optimization technique. In: Industrial electronics society, IECON 2013-39th annual conference of the IEEE. IEEE, pp 3645–3650

  11. Zhao J, Wang W, Pedrycz W, Tian X (2012) Online parameter optimization-based prediction for converter gas system by parallel strategies. IEEE Trans Control Syst Technol 20(3):835–845

    Article  Google Scholar 

  12. Efe MÖ (2011) Neural network assisted computationally simple \( {\text{PI}}^{\lambda } {\text{D}}^{\mu } \) control of a quadrotor UAV. IEEE Trans Ind Inf 7(2):354–361

    Article  Google Scholar 

  13. Mohd Basri MA, Husain AR, Danapalasingam KA (2015) Intelligent adaptive backstepping control for MIMO uncertain non-linear quadrotor helicopter systems. Trans Inst Measur Control 37(3):345–361

    Article  Google Scholar 

  14. Nobahari H, Sharifi A (2014) Continuous ant colony filter applied to online estimation and compensation of ground effect in automatic landing of quadrotor. Eng Appl Artif Intell 32:100–111

    Article  Google Scholar 

  15. Razi A, Afghah F, Chakareski J (2017) Optimal measurement policy for predicting uav network topology. arXiv preprint arXiv:171011185

  16. Khanmirza E, Daneshjou K, Ravandi AK (2018) Underactuated flexible aerial manipulators: a new framework for optimal trajectory planning under constraints induced by complex dynamics. J Intell Rob Syst 92:599–613. https://doi.org/10.1007/s10846-017-0711-6

    Article  Google Scholar 

  17. Chen Y, Yu J, Mei Y, Zhang S, Ai X, Jia Z (2016) Trajectory optimization of multiple quad-rotor UAVs in collaborative assembling task. Chin J Aeronaut 29(1):184–201

    Article  Google Scholar 

  18. Keshavarzian H, Daneshjou K (2019) Modified under-actuated quadrotor model for forwarding flight in the presence of ground effect. Aerosp Sci Technol 89:242–252

    Article  Google Scholar 

  19. Bangura M, Mahony R (2012) Nonlinear dynamic modeling for high performance control of a quadrotor. In: Australasian conference on robotics and automation. pp 1–10

  20. Zawiski R, Błachuta M (2014) Modelling and optimal control system design for quadrotor platform—an extended approach. Bull Pol Acad Sci Tech Sci 62(3):535–550

    Google Scholar 

  21. Kang N, Sun M (2000) Simulated flowfields in near-ground operation of single-and twin-rotor configurations. J Aircraft 37(2):214–220

    Article  Google Scholar 

  22. Lim JW, McAlister KW, Johnson W (2009) Hover performance correlation for full-scale and model-scale coaxial rotors. J Am Helicopter Soc 54(3):32005

    Article  Google Scholar 

  23. Raffo GV, Ortega MG, Rubio FR (2011) Path tracking of a UAV via an underactuated control strategy. Eur J Control 17(2):194–213

    Article  MathSciNet  Google Scholar 

  24. Efe MÖ (2012) Battery power loss compensated fractional order sliding mode control of a quadrotor UAV. Asian J Control 14(2):413–425

    Article  MathSciNet  Google Scholar 

  25. Jia Z, Yu J, Mei Y, Chen Y, Shen Y, Ai X (2017) Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerosp Sci Technol 68:299–307

    Article  Google Scholar 

  26. Rawashdeh NA, Rawashdeh OA, Sababha BH (2017) Vision-based sensing of UAV attitude and altitude from downward in-flight images. J Vib Control 23(5):827–841

    Article  Google Scholar 

  27. Ahmed S, Wang H, Tian Y (2018) Model-free control using time delay estimation and fractional-order nonsingular fast terminal sliding mode for uncertain lower-limb exoskeleton. J Vib Control 24(22):5273–5290

    Article  MathSciNet  Google Scholar 

  28. Nadda S, Swarup A (2018) On adaptive sliding mode control for improved quadrotor tracking. J Vib Control 24(14):3219–3230

    Article  MathSciNet  Google Scholar 

  29. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS’95. IEEE, pp 39–43

  30. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Daneshjou.

Additional information

Technical Editor: André Cavalieri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The body of quadrotor is assumed symmetry, and the center of mass is coincided the center of geometry. Then the inertia matrix (\( I \)) is diagonal: \( I = {\text{diag}}\left( {I_{xx} , I_{yy} , I_{zz} } \right) \) (N m s2). The total thrust and moments produced by four rotors are extracted by:

$$ U_{B} \left(\Omega \right) = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ {U_{1} } \\ \end{array} } \\ {U_{2} } \\ {\begin{array}{*{20}c} {U_{3} } \\ {U_{4} } \\ \end{array} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ {b\left( {\Omega _{1}^{2} +\Omega _{2}^{2} +\Omega _{3}^{2} +\Omega _{4}^{2} } \right)} \\ {\begin{array}{*{20}c} {bl\left( {\Omega _{4}^{2} -\Omega _{2}^{2} } \right)} \\ {bl\left( {\Omega _{3}^{2} -\Omega _{1}^{2} } \right)} \\ {d\left( {\Omega _{2}^{2} +\Omega _{4}^{2} -\Omega _{1}^{2} -\Omega _{3}^{2} } \right)} \\ \end{array} } \\ \end{array} } \right] $$
(26)

where \( b\left( {{\text{N}}\;{\text{s}}^{2} } \right) \) indicates the thrust factor, \( d\left( {{\text{N}}\,{\text{m}}\,{\text{s}}^{2} } \right) \) is drag factor, \( l\left( {\text{m}} \right) \) is the distance between the centers of the quadrotor and the rotor, \( U_{i} \) is the input vector components, and \( \Omega _{i} \) is the speed of rotor. Refer [18] for more information on the assumptions and saturation limits of control input vector. According to Sect. 3, the dynamic equations of quadrotor under the ground effect are reformulated as follows:

$$ \left[ {\begin{array}{*{20}l} {\dot{x}_{1} } \hfill \\{\dot{x}_{2} } \hfill \\ {\dot{x}_{3} } \hfill \\ {\dot{x}_{4} }\hfill \\ {\dot{x}_{5} } \hfill \\ {\dot{x}_{6} } \hfill \\{\dot{x}_{7} } \hfill \\ {\dot{x}_{8} } \hfill \\ {\dot{x}_{9} }\hfill \\ {\dot{x}_{10} } \hfill \\ {\dot{x}_{11} } \hfill \\{\dot{x}_{12} } \hfill \\ \end{array} } \right] = \left[{\begin{array}{*{20}l} {\dot{\varphi }} \hfill \\ {\ddot{\varphi }}\hfill \\ {\dot{\theta }} \hfill \\ {\ddot{\theta }} \hfill \\ {\dot{\psi }} \hfill \\ {\ddot{\psi }} \hfill \\ {\dot{x}} \hfill \\{\ddot{x}} \hfill \\ {\dot{y}} \hfill \\ {\ddot{y}} \hfill \\{\dot{z}} \hfill \\ {\ddot{z}} \hfill \\ \end{array} } \right] =\left[ \begin{array}{c}x_2\\ x_{4} x_{6} a_{1} - \frac{{J_{TP} }}{{I_{xx}}}\dot{\theta }\Omega + \frac{{b_{1} }}{{1 - \left({\frac{R}{{4x_{11} }}} \right)^{2} \left\{ {\frac{1}{{1 + \left({\frac{{\sqrt {x_{8}^{2} + x_{10}^{2} + x_{12}^{2} } }}{{\sqrt { -\frac{{x_{8}^{2} + x_{10}^{2} + x_{12}^{2} }}{2} + \sqrt {\left({\frac{{x_{8}^{2} + x_{10}^{2} + x_{12}^{2} }}{2}} \right)^{2} +\left( {\frac{{b\Omega _{i}^{2} }}{2\rho A}} \right)^{2} } } }}}\right)^{2} }}} \right\}}}\left( {U_{2} } \right) \hfill\\x_4 \\ x_{2}x_{6} a_{3} - \frac{{J_{TP} }}{{I_{xx} }}\dot{\varphi }\Omega +\frac{{b_{2} }}{{1 - \left( {\frac{R}{{4x_{11} }}} \right)^{2}\left\{ {\frac{1}{{1 + \left( {\frac{{\sqrt {x_{8}^{2} + x_{10}^{2}+ x_{12}^{2} } }}{{\sqrt { - \frac{{x_{8}^{2} + x_{10}^{2} +x_{12}^{2} }}{2} + \sqrt {\left( {\frac{{x_{8}^{2} + x_{10}^{2} + x_{12}^{2} }}{2}} \right)^{2} + \left( {\frac{{b\Omega _{i}^{2}}}{2\rho A}} \right)^{2} } } }}} \right)^{2} }}} \right\}}}\left({U_{3} } \right) \hfill\\x_6\\ x_{4} x_{2} a_{5} + b_{3} (U_{4} ) \\x_8 \\ \frac{{u_{x} /m}}{{1 - \left({\frac{R}{{4x_{11} }}} \right)^{2} \left\{ {\frac{1}{{1 + \left({\frac{{\sqrt {x_{8}^{2} + x_{10}^{2} + x_{12}^{2} } }}{{\sqrt { -\frac{{x_{8}^{2} + x_{10}^{2} + x_{12}^{2} }}{2} + \sqrt {\left({\frac{{x_{8}^{2} + x_{10}^{2} + x_{12}^{2} }}{2}} \right)^{2} + \left( {\frac{{b\Omega _{i}^{2} }}{2\rho A}} \right)^{2} } } }}}\right)^{2} }}} \right\}}}\left( {U_{1} } \right) - K_{x} x_{8} /m\hfill\\10 \\ \frac{{u_{y} /m}}{{1 - \left( {\frac{R}{{4x_{11} }}}\right)^{2} \left\{ {\frac{1}{{1 + \left( {\frac{{\sqrt {x_{8}^{2} +x_{10}^{2} + x_{12}^{2} } }}{{\sqrt { - \frac{{x_{8}^{2} +x_{10}^{2} + x_{12}^{2} }}{2} + \sqrt {\left( {\frac{{x_{8}^{2} +x_{10}^{2} + x_{12}^{2} }}{2}} \right)^{2} + \left( {\frac{{b\Omega_{i}^{2} }}{2\rho A}} \right)^{2} } } }}} \right)^{2} }}}\right\}}}\left( {U_{1} } \right) - K_{y} x_{10} /m \hfill\\x_{12} \\ \frac{{\left( {\cos x_{1} \cos x_{3} } \right)/m}}{{1 - \left({\frac{R}{{4x_{11} }}} \right)^{2} \left\{ {\frac{1}{{1 + \left({\frac{{\sqrt {x_{8}^{2} + x_{10}^{2} + x_{12}^{2} } }}{{\sqrt { -\frac{{x_{8}^{2} + x_{10}^{2} + x_{12}^{2} }}{2} + \sqrt {\left({\frac{{x_{8}^{2} + x_{10}^{2} + x_{12}^{2} }}{2}} \right)^{2} +\left( {\frac{{b\Omega _{i}^{2} }}{2\rho A}} \right)^{2} } } }}}\right)^{2} }}} \right\}}}\left( {U_{1} } \right) - K_{z} x_{12} /m\hfill \\ \end{array} \right] $$
(27)
$$ \begin{aligned} a_{1} & = \left( {I_{yy} - I_{zz} } \right)/I_{xx} ,\quad a_{3} = \left( {I_{zz} - I_{xx} } \right)/I_{yy} ,\quad a_{1} = \left( {I_{xx} - I_{yy} } \right)/I_{zz} \\ b_{1} & = d/I_{xx} ,\quad b_{2} = d/I_{yy} ,\quad b_{3} = 1/I_{zz} \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarzian, H., Daneshjou, K. PSO-based online estimation of aerodynamic ground effect in the backstepping controller of quadrotor. J Braz. Soc. Mech. Sci. Eng. 42, 555 (2020). https://doi.org/10.1007/s40430-020-02614-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02614-w

Keywords

Navigation