Skip to main content
Log in

A comparative analysis of microwave assisted natural (Murex virgineus shell) and chemical nanohydroxyapatite: structural, morphological and biological studies

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAp) has been widely used as an implant material for repairing or substituting human hard tissues due to its close similarity in composition to the natural bone and teeth. Many researchers are preparing HAp from natural and chemical sources. Generally, the products from the chemical sources are incompatible and do not meet out the biomedical demand. Thus, the present study is focused to compare the products from both natural and chemical sources through microwave irradiation method. For synthesizing HAp, calcium source was achieved from commercial calcium nitrate (Ca (NO3)2 4H2O) and sea shell (Murex virgineus) as CaO. The effect of polymers (poly ethylene glycol (PEG) and poly vinyl alcohol (PVA)) on both natural and chemically derived HAp is examined. For making better comparison, synthesized products have been characterized by Fourier transform infrared spectroscopy, x-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy with SAED pattern, and antibacterial activity. Better rod-like morphology and suitable crystallinity are achieved in the naturally derived HAp. The overall results show that the polymer-assisted nanohydroxyapatite (nHAp) from Murex virgineus could enhance properties such as size, shape, surface area, and antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mohd Puad, N.A.S., Koshy, P., Abdullah, H.Z., Idris, M.I., Lee, T.C.: Syntheses of hydroxyapatite from natural sources. Heliyon. 5, e01588 (2019)

    CAS  Google Scholar 

  2. Riaz, M., Zia, R., Ijaz, A., Hussain, T., Mohsin, M., Malik, A.: Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity. Mater. Sci. Eng. C. 90, 308–313 (2018)

    CAS  Google Scholar 

  3. Barabas, R., Cziko, M., Dekany, I., Bizo, L., Bogya, E.S.: Comparative study of particle size analysis of hydroxyapatite-based nanomaterials. Chem. Pap. 67(11), 1414–1423 (2013)

    CAS  Google Scholar 

  4. Hamza, K., Satu, O., Manal, E., Abdelaziz, E., El Hassan, G., Mohamed, J., Zineb, H.: Porous foams based hydroxyapatite prepared by direct foaming method using egg white as a pore promoter. J. Aust. Ceram. Soc. 55, 611–619 (2019)

    Google Scholar 

  5. Mollazadeh, S., Javadpour, J., Khavandi, A.: In situ synthesis and characterization of nano-size hydroxyapatite in poly(vinyl alcohol) matrix. Ceram. Int. 33, 1579–1583 (2007)

    CAS  Google Scholar 

  6. Başargan, T., Erdol-Aydin, N., Nasun-Saygili, G.: In situ biomimetic synthesis to produce hydroxyapatite – polyvinyl alcohol biocomposites: precipitation and spray drying methods. Polym.-Plast. Technol. Eng. 55(5), 447–452 (2016)

    Google Scholar 

  7. Pallela, R., Venkatesan, J., Kim, S.K.: Polymer assisted isolation of hydroxyapatite from Thunnus obesus bone. Ceram. Int. 37, 3489–3497 (2011)

    CAS  Google Scholar 

  8. Tseng, Y.H., Kuo, C.S., Li, Y.Y., Huang, C.P.: Polymer-assisted synthesis of hydroxyapatite nanoparticles. Mater. Sci. Eng. C. 29, 819–822 (2009)

    CAS  Google Scholar 

  9. Antony, G.J.M., Aruna, S.T., Raja, S.: Enhanced mechanical properties of acrylate based shape memory polymer using grafted hydroxyapatite. J. Polym. Res. 25, 120–230 (2018)

    Google Scholar 

  10. Gimeno-Fabra, M., Hild, F., Dunne, P.W., Walton, K., Grant, D.M., Irvine, D.J., Lester, E.H.: Continuous synthesis of dispersant-coated hydroxyapatite plates. Cryst. Eng. Comm. 17, 6175–6182 (2015)

    CAS  Google Scholar 

  11. Chaudhuri, B., Mondal, B., Ray, S.K., Sarkar, S.C.: A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAp) composite scaffolds for probable biological application. Colloid Surface B. 143, 71–80 (2016)

    CAS  Google Scholar 

  12. Arul, K.T., Ramya, J.R., Karthikeyan, K., Kalkura, S.N.: A novel and rapid route to synthesis polyvinyl alcohol/calcium phosphate nanocomposite coatings by microwave assisted deposition. Mater. Lett. 135, 191–194 (2014)

    CAS  Google Scholar 

  13. Akyol, S., Ben Nissan, B., Karacan, I., Yetmez, M., Gokce, H., Suggett, D.J., Oktar, F.N.: Morphology, characterization, and conversion of the corals Goniopora spp. and Porites cylindrica to hydroxyapatite. J. Aust. Ceram. Soc. 55, 893–901 (2019)

    CAS  Google Scholar 

  14. Boutinguiza, M., Pou, J., Comesana, R., Lusquiños, F., de Carlos, A., Leon, B.: Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C. 32, 478–486 (2012)

    CAS  Google Scholar 

  15. Sevgi, O.L., Oktar, F.N., Gultekin, G., Sabri Kayali, E.: Influence of heat-treated bovine bone-derived hydroxyapatite on physical properties and in vitro degradation behavior of poly (lactic acid) composites. Polym.-Plast. Technol. Eng. 52, 1043–1053 (2013)

    Google Scholar 

  16. Xiaoying, L., Yongbin, F., Dachun, G., Wei, C.: Preparation and characterization of natural hydroxyapatite from animal hard tissues. Key Eng. Mater. 342, 213–216 (2007)

    Google Scholar 

  17. Xu, Y., Wang, D., Yan, L., Tang, H.: Hydrothermal conversion of coral into hydroxyapatite. Mater. Charact. 47, 83–87 (2001)

    CAS  Google Scholar 

  18. Karacan, I., Gunduz, O., Ozyegin, L.S., Gokce, H., Ben-Nissan, B., Akyol, S., Oktar, F.N.: A simple method of producing hydroxyapatite and tri calcium phosphate from coral (Pocillopora verrucosa). J. Aus. Ceram. Soc. 50, 52–58 (2014)

    Google Scholar 

  19. Gergely, G., Weber, F., Lukacs, I., Attila, L., Horvath, T.Z.E., Balazsi, J.M.C.: Preparation and characterization of hydroxyapatite from eggshell. Ceram. Int. 36, 803–806 (2010)

    CAS  Google Scholar 

  20. Wu, S.C., Tsou, H.K., Hsu, H.C., Hsu, S.K., Liou, S.P., Ho, W.F.: A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram. Int. 39, 8183–8188 (2013)

    CAS  Google Scholar 

  21. Felsen, J.T., Prichodko, A., Semasko, M., Skaudzius, R., Beganskiene, A., Kareiva, A.: Synthesis and characterization of iron-doped / substituted calcium hydroxyapatite from seashells Macoma balthica (L.). Adv. Powder Technol. 26, 1287–1293 (2015)

    Google Scholar 

  22. Santhosh, S., Balasivanandha Prabu, S.: Thermal stability of nanohydroxyapatite synthesized from seashells through wet chemical synthesis. Mater. Lett. 97, 121–124 (2013)

    CAS  Google Scholar 

  23. Shavandi, A., Bekhit, A.E.A., Ali, A., Sun, Z.: Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells, using a rapid microwave method. Mater. Chem. Phys. 150, 607–616 (2015)

    Google Scholar 

  24. Lemos, A.F., Rocha, J.H.G., Quaresma, S.S.F., Kannan, S.: Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J. Eur. Ceram. Soc. 26, 3639–3646 (2006)

    CAS  Google Scholar 

  25. Ge, H., Zhao, B., Lai, Y.: From crabshell to chitosan-hydroxyapatite composite material via a biomorphic mineralization synthesis method. Mater. Sci. Mater. Med. 21, 1781–1787 (2010)

    CAS  Google Scholar 

  26. Kaygili, O., Dorozhkin, S.V., Keser, S.: Synthesis and characterization of Ce- substituted hydroxyapatite by sol-gel method. Mater. Sci. Eng. C. 42, 78–82 (2014)

    CAS  Google Scholar 

  27. Bensalaha, H., Bekheet, M.F., Alami Younssi, S., Ouammou, M., Gurlo, A.: Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste. J. Environ. Chem. Eng. 6, 1347–1352 (2018)

    Google Scholar 

  28. Le, H., Natesan, K., Pranti-Haran, S.: Mechanical property and biocompatibility of co-precipitated nano hydroxyapatite–gelatine composites. J. Adv. Ceram. 4(3), 237–243 (2015)

    CAS  Google Scholar 

  29. Mostafa, N.Y.: Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater. Chem. Phys. 94, 333–341 (2005)

    CAS  Google Scholar 

  30. Chen, J., Wen, Z., Zhong, S.: Synthesis and characterization of hydroxyapatite nanorods from abalone shells via hydrothermal solid state conversion. Mater. Des. 87, 445–449 (2014)

    Google Scholar 

  31. Liu, W., Qian, G., Zhang, B., Liu, L., Liu, H.: Facile synthesis of spherical nano hydroxyapatite and its application in photocatalytic degradation of methyl orange dye under UV irradiation. Mater. Lett. 17, 15–17 (2016)

    Google Scholar 

  32. Nagata, F., Miyajima, T., Kato, K.: Preparation of phylloquinone-loaded poly (lactic acid) / hydroxyapatite core–shell particles and their drug release behavior. Adv. Powder Technol. 27, 903–907 (2016)

    CAS  Google Scholar 

  33. Mishra, V.K., Rai, S.B., Asthana, B.P.: Effect of annealing on nanoparticles of hydroxyapatite synthesized via microwave irradiation: structural and spectroscopic studies. Ceram. Int. 40, 1319–1328 (2014)

    Google Scholar 

  34. Lozano, N.M., Castillo, R.V., Rivera-Munoz, E.M.: Crystal growth and structural analysis of hydroxyapatite nanofibers synthesized by the hydrothermal microwave-assisted method. Ceram. Int. 43, 451–457 (2017)

    Google Scholar 

  35. Lamkhao, S., Phaya, M., Jansakun, C., Chandet, N., Thongkorn, K., Rujijanagu, G., Bangrak, P., Randorn, C.: Synthesis of hydroxyapatite with antibacterial properties using a microwave-assisted combustion method. Sci. Rep. 9(1), 4015–4020 (2019)

    Google Scholar 

  36. Gayathri, U., Muthukumarasamy, N.: Magnesium incorporated hydroxyapatite nanoparticles: preparation characterization, antibacterial and larvicidal activity. Arab. J. Chem. 11(5), 645–654 (2016)

    Google Scholar 

  37. Dhanaraj, K., Suresh, G.: Conversion of waste sea shell (Anadara granosa) into valuable nanohydroxyapatite (nHAp) for biomedical applications. Vacuum. 152, 222–230 (2018)

    CAS  Google Scholar 

  38. Zhong, S., Wen, Z., Li, J.C.Q.: Effects for rapid conversion from abalone shell to hydroxyapaptite nanosheets by ionic surfactants. Mater. Sci. Eng. C. 77, 708–712 (2017)

    CAS  Google Scholar 

  39. Hoque, M.E., Shehryar, M., Nurul Islam, K.M.: Processing and characterization of cockle shell calcium carbonate (CaCO3) bioceramic for potential application in bone tissue engineering. J. Mater. Sci. Eng. 2, 3–7 (2013)

    Google Scholar 

  40. Sivakumar, M., Sampath Kumar, T.S., Shantha, K.L.: Development of hydroxyapatite derived from Indian coral. Biomaterials. 17, 1709–1714 (1996)

    CAS  Google Scholar 

  41. Anee Kuriakose, T., Narayana Kalkura, S., Palanichamy, M., Arivuoli, D.: Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol – based sol- gel technique at low temperature. J. Cryst. Growth. 263, 517–523 (2004)

    Google Scholar 

  42. Acevedo-Davila, J.L., Lopez-Cuevas, J., Vargas Gutierrez, G., Rendon-Angeles, J.C., Mendez-Nonell, J.: Chemical synthesis of bone-like carbonate hydroxyapatite from hen eggshells and its characterization. Bol Soc Esp Ceram. V. 46, 225–231 (2007)

    CAS  Google Scholar 

  43. Bahman, N.T.: Thermal treatment effect on structural features of mechano-synthesized fluorapatite–titania nanocomposite: a comparative study. J .Adv. Ceram. 3(1), 31–42 (2014)

    Google Scholar 

  44. Sossa, P.A.F., Giraldo, B.S., Garcia, B.C.G., Parra, E.R., Arango, P.J.A.: Comparative study between natural and synthetic hydroxyapatite: structural, morphological and bioactivity properties. Rev. Mater. 23(4), e-12217 (2018)

    Google Scholar 

  45. Giraldo-Betancur, A.L., Espinosa-Arbelaez, D.G., del Real-Lopez, A., Millan-Malo, B.M., Rivera-Munoz, E.M., Gutierrez-Cortez, E., Pineda-Gomez, P., Jimenez-Sandoval, S., Rodriguez-Garcia, M.E.: Comparison of physicochemical properties of bio and commercial hydroxyapatite. Curr. Appl. Phys. 13(7), 1383–1390 (2013)

    Google Scholar 

  46. Mishra, V.K., Bhattacharjee, B.N., Parkash, O., Kumar, D., Rai, S.B.: Mg-doped hydroxyapatite nanoplates for biomedical applications: a surfactant assisted microwave synthesis and spectroscopic investigations. J. Alloys Compd. 614, 283–288 (2014)

    CAS  Google Scholar 

  47. Suresh Kumar, C., Dhanaraj, K., Vimalathithan, R.M., Ilaiyaraja, P., Suresh, G.: Hydroxyapatite for bone related applications derived from sea shell waste by simpleprecipitation method. J. Asian Ceram. Soc. 8(2), 416–429 (2020)

    Google Scholar 

  48. Shamugam, N., Dhanaraj, K., Viruthagiri, G., Balamurugan, K., Deivam, K.: Synthesis and characterization of surfactant, assisted Mn2+ doped ZnO nanocrystals. Arab. J. Chem. 9, S758–S764 (2016)

    Google Scholar 

  49. Mohandes, F., Niasari, M.S., Fathi, M., Fereshteh, Z.: Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism. Mater. Sci. Eng. C. 45, 29–36 (2014)

    CAS  Google Scholar 

  50. Pal, A., Paul, S., Choudhury, A.R., Balla, V.K., Das, M., Sinha, A.: Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications. Mater. Lett. 203, 89–92 (2017)

    CAS  Google Scholar 

  51. Ramasamy, V., Anand, P., Suresh, G.: Synthesis and characterization of polymer-mediated CaCO3 nanoparticles using limestone: a novel approach. Adv. Powder Technol. 29(3), 818–834 (2018)

    CAS  Google Scholar 

  52. Pan, Y., Xiong, D.: Preparation and characterization of nano-hydroxyapatite / polyvinyl alcohol gel composites. J. Wuhan Univ. Technol. Mater. Sci. Eng. 25(3), 474–478 (2010)

    CAS  Google Scholar 

  53. Klinkaewnarong, J., Utara, S.: Ultrasonic-assisted conversion of limestone into needle- like hydroxyapatite nanoparticles. Ultrason. Sonochem. 46, 18–25 (2018)

    CAS  Google Scholar 

  54. Hasuwan, P.K., Kuanchertchoo, N., Wetprasit, N., Supaphol, P.: Hydroxyapatite/ovalbumin composite particles as model protein carriers for bone tissue engineering: I. Synthesis and characterization. Mater. Sci. Eng. C. 32, 758–762 (2012)

    Google Scholar 

  55. Bricha, M., Belmamouni, Y., Mokhtar Essassi, E., Ferreira, J.M.F., Mabrouk, K.E.: Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanopowders. J. Nanosci. Nanotechnol. 12, 1–8 (2012)

    Google Scholar 

  56. Hajimirzaee, S., Chansai, S., Hardacre, C., Banks, C.E., Doyle, A.M.: Effects of surfactant on morphology, chemical properties and catalytic activity of hydroxyapatite. J. Solid State Chem. 276, 345–351 (2019)

    CAS  Google Scholar 

  57. Shi, X., Li, M., Yang, H., Chen, S., Yuan, L., Zhang, K., Sun, J.: PEG-300 assisted hydrothermal synthesis of 4ZnO.B2O3.H2O nanorods. Mater. Res. Bull. 42, 1649–1656 (2007)

    CAS  Google Scholar 

  58. Palanivelu, R., Mary Saral, A., Ruban Kumar, A.: Nanocrystalline hydroxyapatite prepared under various pH conditions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 37–41 (2014)

    CAS  Google Scholar 

  59. Jadalannagari, S., Deshmukh, K., Ramanan, S.R., Kowshik, M.: Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol–gel technique. Appl. Nanosci. 4, 133–141 (2014)

    CAS  Google Scholar 

  60. Mehta, P., Kaith, B.S.: In-situ fabrication of rod shaped nano-hydroxyapatite using microwave assisted semi-interpenetrating network as a template-morphology controlled approach. Mater. Chem. Phys. 208, 49–60 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Suresh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanaraj, K., Suresh Kumar, C., Socrates, S.H. et al. A comparative analysis of microwave assisted natural (Murex virgineus shell) and chemical nanohydroxyapatite: structural, morphological and biological studies. J Aust Ceram Soc 57, 173–183 (2021). https://doi.org/10.1007/s41779-020-00522-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00522-9

Keywords

Navigation