Skip to main content
Log in

The Underlying Mechanism of Faster Current Attenuation of HTS Magnet in Persistent Current Mode Subject to the Traveling Magnetic Fields

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

High-temperature superconducting (HTS) magnet, due to its greater performance of magnetic field at higher temperature (20–40 K), better thermal stability, smaller volume and weight under the same requirements, and lower refrigeration costs, has attracted growing attention in the ultra-high-speed maglev system, high field magnet, and some other applications. Considering the practical requirements, closed-loop method is generally adopted in HTS magnet to maintain the persistent operation and to output the stable magnetic fields. But the accelerated current attenuation occurs when the HTS magnet is subjected to traveling magnetic fields, which is not conducive to the long-term operation. Therefore, this paper aims to investigate the essence of current attenuation of HTS magnet in persistent current mode under traveling magnetic fields and to further suppress this adverse behavior. In this study, to calculate the current distribution and dynamic resistance, a two-dimensional (2-D) finite element model (FEM) was established and verified by comparing with the experimental results. It can be seen from the simulation results that the dissipative losses caused by dynamic resistance present a non-negligible effect on the current attenuation of the magnet. And the mechanism of faster current attenuation was well explained by the variation of the dynamic resistance under the traveling magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mizuno, K., Sugino, M., Tanaka, M., Ogata, M.: IEEE Trans. Appl. Supercond. 27, 3600205 (2017)

    Article  Google Scholar 

  2. Ogata, M., Mizuno, K., Arai, Y., Hasegawa, H., Sasakawa, T., Nagashima, K.: IEEE Trans. Appl. Supercond. 21, 1556–1559 (2011)

    Article  ADS  Google Scholar 

  3. Dong, F., Huang, Z., Hao, L., Xu, X., Jin, Z., Shao, N.: Sci. Rep. 9, 11844 (2019)

    Article  ADS  Google Scholar 

  4. Yokoyama, S., Lee, J., Imura, T., Matsuda, T., Eguchi, R., Inoue, T., Nagahiro, T., Tanabe, H., Sato, S., Daikoku, A., Nakamura, T., Shirai, Y., Miyagi, D., Tsuda, M.: IEEE Trans. Appl. Supercond. 27, 4400604 (2017)

    Article  Google Scholar 

  5. Hahn, S., Kim, K., Kim, K., Hu, X., Painter, T., Dixon, I., Kim, S., Bhattarai, K.R., Noguchi, S., Jaroszynski, J., Larbalestier, D.C.: Nature. 570, 496–499 (2019)

    Article  ADS  Google Scholar 

  6. Liu, J., Wang, Q., Qin, L., Zhou, B., Wang, K., Wang, Y., Wang, L., Zhang, Z., Dai, Y., Liu, H., Hu, X., Wang, H., Cui, C., Wang, D., Wang, H., Sun, J., Sun, W., Xiong, L.: Supercond. Sci. Technol. 33, 03LT01 (2020)

    Article  Google Scholar 

  7. Takahashi, K., Hase, T., Awaji, S., Nakai, A., Yamano, S., Mukoyama, S., Sakamoto, H.: IEEE Trans. Appl. Supercond. 28, 4600104 (2018)

    Google Scholar 

  8. Ohki, K., Nagaishi, T., Kato, T., Yokoe, D., Hirayama, T., Ikuhara, Y., Ueno, T., Yamagishi, K., Takao, T., Piao, R., Maeda, H., Yanagisawa, Y.: Supercond. Sci. Technol. 30, 115017 (2017)

    Article  ADS  Google Scholar 

  9. Park, Y.G., Lee, C.Y., Lee, J., Nam, S., Chung, Y.D., Yoon, Y.S., Ko, T.K.: IEEE trans. Appl. Supercond. 25, 3601204 (2015)

    Google Scholar 

  10. Geng, J., Zhang, H., Li, C., Zhang, X., Shen, B., Coombs, T.A.: Supercond. Sci. Technol. 30, 035022 (2017)

    Article  ADS  Google Scholar 

  11. Oomen, M.P., Rieger, J., Leghissa, M., Haken, B., Kate, H.H.J.t.: Supercond. Sci. Technol. 12, 382–387 (1999)

    Article  ADS  Google Scholar 

  12. Ogasawara, T., Yasukōchi, K., Nose, S., Sekizawa, H: Cryogenics, 16, (1) 33–38 (1976)

  13. Ogasawara, T., Yasukōchi, K., Nose, S., Sekizawa, H.: Cryogenics 16, (2) 89–96 (1976)

  14. Geng, J., Matsuda, K., Fu, L., Fagnard, J.-F., Zhang, H., Zhang, X., Shen, B., Dong, Q., Baghdadi, M., Coombs, T.A.: J. Phys. D. Appl. Phys. 49, 11LT01 (2016)

  15. Pardo, E., Kovác, J., Šouc, J.: IEEE Trans. Appl. Supercond. 23, 4701305 (2013)

    Article  ADS  Google Scholar 

  16. Shen, B., Li, C., Geng, J., Zhang, X., Gawith, J., Ma, J., Liu, Y., Grilli, F., Coombs, T.A.: Supercond. Sci. Technol. 31, 075005 (2018)

    Article  ADS  Google Scholar 

  17. Zhang, M., Yuan, W., Kvitkovic, J., Pamidi, S.: Supercond. Sci. Technol. 28, 115011 (2015)

    Article  ADS  Google Scholar 

  18. Kim, Y.B., Hempstead, C.F., Strand, A.R.: Phys. Rev. Lett. 9, 306–309 (1962)

    Article  ADS  Google Scholar 

  19. Gömöry, F., Vojenčiak, M., Pardo, E., Solovyov, M., Šouc, J.: Supercond. Sci. Technol. 23, 034012 (2010)

    Article  ADS  Google Scholar 

  20. Duron, J., Grilli, F., Dutoit, B., Stavrev, S.: Physica C. 401, 231–235 (2004)

    Article  ADS  Google Scholar 

  21. Ainslie, M.D., Bumby, C.W., Jiang, Z., Toyomoto, R., Amemiya, N.: Supercond. Sci. Technol. 31, 074003 (2018)

    Article  ADS  Google Scholar 

  22. Jiang, Z., Toyomoto, R., Amemiya, N., Zhang, X., Bumby, C.W.: Supercond. Sci. Technol. 30, 03LT01 (2017)

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grants 51722706, in part by the Sichuan Youth Science & Technology Foundation under Grants 2020YFG0354, in part by the State Key Laboratory of Traction Power under Grants 2019TPL_T12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtong Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Wang, C., Deng, Y. et al. The Underlying Mechanism of Faster Current Attenuation of HTS Magnet in Persistent Current Mode Subject to the Traveling Magnetic Fields. J Supercond Nov Magn 34, 27–36 (2021). https://doi.org/10.1007/s10948-020-05671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05671-3

Keywords

Navigation