Skip to main content
Log in

Significantly enhanced photocatalytic activity of TiO2/TiC coatings under visible light

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Rutile TiO2 forms on TiC coatings (TiO2/TiC coatings) during carbon-embedding heat treatment (cHT) for TiC coatings. The photocatalytic activity of TiO2/TiC coatings has been significantly enhanced, especially under visible light. The influence of cHT temperature for TiC and Ti coatings on surface morphology, formed compounds, and photocatalytic activity has also been investigated. In general, rutile TiO2 forms on TiC coatings, whereas TiCxOy forms on Ti coatings. By raising the cHT temperature for TiC coatings, the surface morphology of TiO2/TiC coatings with a pore-like structure significantly changes from nano-size to micro-size, inevitably resulting in the reduction of the accessible surface area. However, the influence of cHT temperature on the Ti coatings is insignificant, demonstrating a smooth surface morphology. Notably, owing to the increased accessible surface area and formed heterojunction of TiO2/TiC, the photocatalytic activity of TiO2/TiC coatings has been significantly enhanced approximately 6 times especially under visible light, compared with that of TiCxOy/Ti coatings. Furthermore, when the cHT temperature has been raised, the photocatalytic activity of TiO2/TiC coatings initially increases and then decreases, achieving their most satisfaction at 1073 K, which is attributed to the narrowed band gap of TiO2 owing to the shifted O 1s spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63(12):515–582

    Article  CAS  Google Scholar 

  2. Kumar S, Devi L (2011) J Phys Chem A 115(46):13211–13241

    Article  CAS  Google Scholar 

  3. Kumaravel V, Mathew S, Bartlett J, Pillai S (2019) Appl Catal B 244:1021–1064

    Article  CAS  Google Scholar 

  4. Anandan S, Rao T, Sathish M, Rangappa D, Honma I, Miyauchi M (2013) ACS Appl Mater Interfaces 5(1):207–212

    Article  CAS  Google Scholar 

  5. Dong J, Han J, Liu Y, Nakajima A, Matsushita S, Wei S, Gao W (2014) ACS Appl Mater Interfaces 6(3):1385–1388

    Article  CAS  Google Scholar 

  6. Ma X, Ni X (2015) J Mater Sci-Mater El 26(2):1129–1135

    Article  CAS  Google Scholar 

  7. Chen X, Liu L, Yu P, Mao S (2011) Science 331(6018):746–750

    Article  CAS  Google Scholar 

  8. Zinatloo-Ajabshir S, Ghasemian N, Salavati-Niasari M (2020) Sep Purif Technol 248:117062

    Article  CAS  Google Scholar 

  9. Zong X, Yan H, Wu G, Ma G, Wen F, Li C (2008) J Am Chem Soc 130(23):7176–7177

    Article  CAS  Google Scholar 

  10. Zinatloo-Ajabshir S, Morassaei MS, Amiri O (2020) Ceram Int 46(5):6095–6107

    Article  CAS  Google Scholar 

  11. Vikrant K, Kim K, Deep A (2019) Appl Catal B 259:118025

    Article  CAS  Google Scholar 

  12. Zinatloo-Ajabshir S, Ghasemian N, Salavati-Niasari M (2020) Ceram Int 46(1):66–73

    Article  CAS  Google Scholar 

  13. Martyanov IN, Klabunde KJ (2004) J Catal 225(2):408–416

    Article  CAS  Google Scholar 

  14. Nalajala N, Patra KK, Bharad PA, Gopinath CS (2019) RSC Adv 9(11):6094–6100

    Article  CAS  Google Scholar 

  15. Lu Y, Guan S, Hao L, Yoshida H (2015) Coatings 5(3):425–464

    Article  CAS  Google Scholar 

  16. Guan S, Hao L, Lu Y, Yoshida H, Pan F, Asanuma H (2016) Mater Sci Semicond Process 41:358–363

    Article  CAS  Google Scholar 

  17. Guan S, Hao L, Yoshida H, Asanuma H, Pan F, Lu Y (2016) J Mater Sci-Mater El 27(10):10399–10404

    Article  CAS  Google Scholar 

  18. Ou Y, Cui X, Zhang X, Jiang Z (2010) J Power Sources 195(5):1365–1369

    Article  CAS  Google Scholar 

  19. Sofiane S, Bilel M (2016) J Photochem Photobiol, A 324:126–133

    Article  CAS  Google Scholar 

  20. Guan S, Hao L, Yoshida H, Pan F, Asanuma H, Lu Y (2017) Mater Lett 188:55–58

    Article  CAS  Google Scholar 

  21. Guan S, Fadhli MAAB, Hao L, Yoshida H, Cheng Y, Zhou K, Lu Y (2019) J Water Process Eng 31:100858

    Article  Google Scholar 

  22. Huang K, Li Y, Xing Y (2013) J Mater Res 28(3):454–460

    Article  CAS  Google Scholar 

  23. Antolini E, Gonzalez E (2010) Appl Catal B Environ 96(3-4):245–266

    Article  CAS  Google Scholar 

  24. Zhang L, Wang S, Jiao S, Huang K, Zhu H (2012) Electrochim Acta 75:357–359

    Article  Google Scholar 

  25. Andersson S, Collen B, Kuylenstierna U, Magneli A (1957) Acta Chem Scand 11:1641–1652

    Article  CAS  Google Scholar 

  26. Jiang B, Hou N, Huang S, Zhou G, Hou J, Cao Z, Zhu H (2013) J Solid State Chem 204:1–8

    Article  CAS  Google Scholar 

  27. Guan S, Hao L, Yoshida H, Pan F, Asanuma H, Lu Y (2016) Mater Lett 167:43–46

    Article  CAS  Google Scholar 

  28. Guan S, Hao L, Yoshida H, Lu Y, Zhao X (2017) Mater Express 7(6):509–515

    Article  CAS  Google Scholar 

  29. Guan S, Hao L, Yoshida H, Itoi T, Asanuma H, Pan F, Lu Y (2016) Surf Coat Technol 307:627–632

    Article  CAS  Google Scholar 

  30. Jiao S, Ning X, Huang K, Zhu H (2010) Pure Appl Chem 82(8):1691–1699

    Article  CAS  Google Scholar 

  31. Rudiger C, Maglia F, Leonardi S, Sachsenhauser M, Sharp I, Paschos O, Kunze J (2012) Electrochim Acta 71:1–9

    Article  Google Scholar 

  32. Ignaszak A, Song C, Zhu W, Zhang J, Bauer A, Baker R, Neburchilov V, Ye S, Campbell S (2012) Electrochim Acta 69:397–405

    Article  CAS  Google Scholar 

  33. Demirci S, Dikici T, Yurddaskal M, Gultekin S, Toparli M, Celik E (2016) Appl Surf Sci 30:591–601

    Article  Google Scholar 

  34. Grandcolas M, Yonge L, Overschelde OV, Snyders R (2014) Ceram Int 40(8):12939–12946

    Article  CAS  Google Scholar 

  35. Henkel B, Neubert T, Zabel S, Lamprecht C, Selhuber-Unkel C, Ratzke K, Strunskus T, Vergohl M, Faupel F (2016) Appl Catal B Environ 180:362–371

    Article  CAS  Google Scholar 

  36. Chen C, Shieh J, Hsieh S, Kuo C, Liao H (2012) Acta Mater 60(18):6429–6439

    Article  CAS  Google Scholar 

  37. Schaub R, Wahlstrom E, Ronnau A, Lagasaard E, Stensgaard I, Besenbacher F (2012) Science 299:377–379

    Article  Google Scholar 

  38. Irie H, Watanabe Y, Hashimoto K (2003) Chem Lett 32(8):772–773

    Article  CAS  Google Scholar 

  39. Li Y, Ishigaki T (2003) Chem Phys Lett 367(5-6):561–565

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sujun Guan or Yun Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Hao, L., Yang, Y. et al. Significantly enhanced photocatalytic activity of TiO2/TiC coatings under visible light. J Solid State Electrochem 25, 603–609 (2021). https://doi.org/10.1007/s10008-020-04834-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04834-5

Keywords

Navigation