Skip to main content
Log in

Band gap tuning of Cu(In,Ga)Se2 thin films by electrodeposition and their subsequent selenization using a rapid thermal annealing system

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Band gap tuning of electrodeposited Cu(In1-x,Gax)Se2 thin films through varying In3+ and Ga3+ concentrations in the electrolytic bath is demonstrated. Cyclic voltammetry was used to determine best Cu(In1-x,Gax)Se2 deposition potentials at the different bath conditions. Band gap tuning of Cu(In1-x,Gax)Se2 was achieved, through incorporation of varying In3+ and Ga3+ levels during film growth, in the range of 1 to 1.4 eV, corresponding to Ga content 0 ≤ Ga/(In + Ga) ≤ 0.64. Deposited films were characterized by EDS/SEM, XRD, and Raman spectroscopy to determine chemical composition, morphology, and crystal structure. Results show that as-deposited Cu(In1-x,Gax)Se2 thin films are of low crystallinity, with Se and Cu-Se compounds present as a secondary phase. Selenization of electrodeposited Cu(In1-x,Gax)Se2 films was performed using a rapid thermal processing system at 550 °C in an overpressure reactive atmosphere of N2/H2 (96%:4%) and elemental Se vapor. Selenization treatment promoted recrystallization and elimination of secondary phases, resulting in an increase in grain size while maintaining film composition. Processed films with Ga/(In + Ga) = 0.35 were processed into devices, achieving 2.6% efficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) 19.9% efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog Photovolt 16(3):235–239

  2. Repins I, Contreras M, Romero M, Yan Y, Metzger W, Li J, Johnston S, Egaas B, DeHart C, Scharf J, McCandless BE, Noufi R, (2008) Characterization of 19.9%-efficient CIGS absorbers, 33rd IEEE Photovoltaic Specialists Conference (PVSC). San Diego, CA, USA, pp 1–6

  3. Chirila A, Reinhard P, Pianezzi F, Bloesch P, Uhl A, Fella C, Kranz L, Keller D, Gretener C, Hagendorfer H, Jaeger D, Erni R, Nishiwaki S, Buecheler S, Tiwari AN (2013) Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat Mater 12(12):1107–1111

  4. Friedlmeier TM, Jackson P, Bauer A, Hariskos D, Kiowski O, Würz R, Powalla M (2015) Improved photocurrent in Cu(In,Ga)Se2 solar cells: From 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE J Photovolt 5(5):1487–1491

  5. Kamada R, Yagioka T, Adachi S, Handa A, Tai KF, Kato T, Sugimoto H (2016) New World Record Cu(In,Ga)(Se,S)2 Thin Film Solar Cell Efficiency Beyond 22%, IEEE 43rd photovoltaic specialists conference (PVSC), Portland, OR, USA, pp 1287–1291

  6. Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, Powalla M (2016) Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%. Phys Status Solidi (RRL) 10(8):583–586

  7. Calixto ME, Méndez-Blas A, Mari-Soucase B (2018) CaF2 thin films obtained by electrochemical processes and the effect of Tb3+ doping concentration on their structural and optical properties. J Solid State Electrochem 22(8):2465–2472

  8. Barranco J, Méndez-Blas A, Calixto ME (2019) Structural, morphology and optical properties of NaYF4 thin films doped with trivalent lanthanide ions. J Mater Sci Mater Electron 30:4855–4866

  9. Lincot D, Guillemoles JF, Taunier S, Guimard D, Sicx-Kurdi J, Chaumont A, Roussel O, Ramdani O, Hubert C, Fauvarque JP, Bodereau N, Parissi L, Panheleux P, Fanouillere P, Naghavi N, Grand PP, Benfarah M, Mogensen P, Kerrec O (2004) Chalcopyrite thin film solar cells by electrodeposition. Sol Energy 77(6):725–737

    Article  CAS  Google Scholar 

  10. Calixto ME, Dobson KD, McCandless BE, Birkmire RW (2006) J Electrochem Soc Controlling growth chemistry and morphology of single-bath electrodeposited Cu(In,Ga)Se2 thin films for photovoltaic application 153(6):G521–G528

  11. Wellings JS, Samantilleke AP, Heavens SN, Warren P, Dharmadasa IM (2009) Electrodeposition of CuInSe2 from ethylene glycol at 150 °C. Sol Energy Mater Sol Cells 93(9):1518–1523

  12. Saji VS, Choi IH, Lee CW (2011) Progress in electrodeposited absorber layer for CuIn(1–x)GaxSe2 (CIGS) solar cells. Sol Energy 85(11):2666–2678

  13. Bhattacharya RN, Oh MK, Kim Y (2012) CIGS-based solar cells prepared from electrodeposited precursor films. Sol Energy Mater Sol Cells 98:198–202

    Article  CAS  Google Scholar 

  14. Dale PJ, Samantilleke AP, Zoppi G, Forbes I, Roncallo S, Peter LM (2007) Deposition and characterization of copper chalcopyrite based solar cells using electrochemical techniques, ECS Trans. ECS Trans 6:535–546

    Article  CAS  Google Scholar 

  15. Aksu S and Pinarbasi M (2011) Electrodeposition methods and chemistries for deposition of CIGS precursor thin films. 37th IEEE Photovoltaic Specialists Conference (PVSC), Seattle, WA, USA, pp 000310–000314

  16. Zhang Y, Han J, Liao C (2016) Insights into the properties of deep eutectic solvent based on reline for Ga-controllable CIGS solar cell in one-step electrodeposition. J Electrochem Soc 163(13):D689–D693

    Article  CAS  Google Scholar 

  17. Broussillou C, Viscogliosi C, Rogee A, Angle S, Grand PP, Bodnar S, Debauche C, Allary JL, Bertrand B, Guillou C, Parissi L, Coletti S, (2015) Statistical process control for Cu(In,Ga)(S,Se)2 electrodeposition-based manufacturing process of 60×120 cm2 modules up to 14,0% efficiency. IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, pp 1–5

  18. Duchatelet A, Letty E, Ferrer JS, Grand PP, Mollica F, Naghavi N (2017) The impact of reducing the thickness of electrodeposited stacked Cu/In/Ga layers on the performance of CIGS solar cells. Sol Energy Mater Sol Cells 162:114–119

    Article  CAS  Google Scholar 

  19. Taunier S, Sicx-Kurdi J, Grand PP, Chomont A, Ramdani O, Parissi L, Panheleux P, Naghavi N, Hubert C, Ben-Farah M, Fauvarque JP, Connolly J, Roussel O, Mogensen P, Mahe E, Guillemoles JF, Lincot D, Kerrec O (2005) Cu(In,Ga)(S,Se)2 solar cells and modules by electrodeposition. Thin Solid Films 480–481:526–531

  20. Frontini MA, Vázquez M (2010) Electrodeposition of CuInSe2 in citrate-containing electrolytes. J Mater Sci 45(11):2995–3000

  21. Bamiduro O, Chennamadhava G, Mundle R, Konda R, Robinson B, Bahoura M, Pradhan AK (2011) Synthesis and characterization of one-step electrodeposited CuIn(1-x)GaxSe2/Mo/glass films at atmospheric conditions. Sol Energy 85(3):545–552

  22. Hamrouni S, AlKhalifah MS, Boujmil MF, Saad KB (2014) Preparation and characterization of CuInSe2 electrodeposited thin films annealed in vacuum. Appl Surf Sci 292:231–236

    Article  CAS  Google Scholar 

  23. Zhang L, Jiang FD, Feng JY (2003) Formation of CuInSe2 and Cu(In,Ga)Se2 films by electrodeposition and vacuum annealing treatment. Sol Energy Mater Sol Cells 80(4):483–490

  24. Faulkner LR (1983) Understanding Electrochemistry: Some Distinctive Concepts. J Chem Educ 60(4):262–264

  25. Shafarman WN, Klenk R, McCandless BE (1996) Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap. J Appl Phys 79(9):7324–7328

  26. Calixto ME, Dobson KD, McCandless BE, Birkmire RW (2005) Growth mechanisms of electrodeposited CuInSe2 and Cu(In,Ga)Se2 determined by cyclic voltammetry. Mater Res Soc Symp Proc 895:F14.17

  27. De La Luz-Merino S, Calixto ME, Méndez-Blas A, Marí-Soucase B (2016) Electrodeposition and characterization of one-dimensional CuInSe2 nanostructures in mesoporous silicon templates. De Gruyten open, Mesoporous Biomater 3:67–75

  28. Hung PK, Lin TH, Houng MP (2014) Characteristics of CuInSe2 nanowire arrays electrodeposited into anodic alumina templates with dimethyl sulfoxide (DMSO) additive. J Electrochem Soc 161(3):D79–D86

  29. Kaupmees L, Altosaar M, Volubujeva O, Mellikov E (2007) Study of composition reproducibility of electrochemically co-deposited CuInSe2 films onto ITO. Thin Solid Films 515(15):5891–5894

  30. Chandran R, Panda SK, Mallik A (2018) A short review on the advancements in electroplating of CuInGaSe2 thin films. Materials for Renewable and Sustainable Energy 7(2):6

  31. Long F, Wang W, Du J, Zou Z (2009) CIS(CIGS) thin films prepared for solar cells by one-step electrodeposition in alcohol solution. J Phys Conf Ser 152:012074

    Article  Google Scholar 

  32. West AR (1984) Solid state chemistry and its applications, Ch. 18. John Wiley and Sons Ltd, New York

  33. Poborchii VV, Kolobov AV, Tanaka K (1998) An in situ Raman study of polarization-dependent photocrystallization in amorphous selenium films. Appl Phys Lett 72(10):1167–1169

    Article  CAS  Google Scholar 

  34. Ramdani O, Guillemoles JF, Lincot D, Grand PP, Chassaing E, Kerrec O, Rzepka E (2007) One-step electrodeposited CuInSe2 thin films studied by Raman spectroscopy. Thin Solid Films 515(15):5909–5912

  35. Ishii M, Shibata K, Nozaki H (1993) Anion distributions and phase transitions in CuS1-xSex(x = 0-1) studied by Raman spectroscopy. J Solid State Chem 105(2):504–511

  36. Minceva-Sukarova B, Najdoski M, Grozdanov I, Chunnilall CJ (1997) Raman spectra of thin solid films of some metal sulfides. J Mol Struct 410–411:267–270

  37. Choi IH (2011) Raman spectroscopy of CuIn1−xGaxSe2 for in-situ monitoring of the composition ratio. Thin Solid Films 519(13):4390–4393

  38. Wei S, Zunger A (1998) Calculated natural band offsets of all II–VI and III–V semiconductors: chemical trends and the role of cation d orbitals. Appl Phys Lett 72(16):2011–2013

  39. Suri DK, Nagpal KC, Chadha GK (1989) X-ray study of CuGaxlnl-xSe2 solid solutions. J Appl Crystallogr 22(6):578–583

  40. Cullity BD (1956) Elements of X-ray diffraction. Addison Wesley, Massachusetts

Download references

Acknowledgments

The authors would like to thank Dr. Rutilo Silva for access granted to the Surface Analysis Laboratory. The authors would like to thank K.D. Dobson from Univ. of Delaware for helping us to reviewing, improving English language, and for all his valuable comments to enrich the content of the manuscript, besides for helping us to complete the selenized Cu(In1-xGax)Se2 thin films into solar cell devices and subsequent J-V characterization.

Funding

This work was carried out with partial financial assistance from VIEP-BUAP under projects 100504211-VIEP-BUAP (2018-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma. Estela Calixto.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Ruiz, M.A., Mendez-Blas, A. & Calixto, M.E. Band gap tuning of Cu(In,Ga)Se2 thin films by electrodeposition and their subsequent selenization using a rapid thermal annealing system. J Solid State Electrochem 25, 591–601 (2021). https://doi.org/10.1007/s10008-020-04832-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04832-7

Keywords

Navigation