Skip to main content
Log in

Synthesis of polymers via cationic ring-opening polymerization using (NH4)3PW12O40-SiO2 composite catalyst

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Composite catalyst of heteropolyacid ammonium salt, (NH4)3PW12O40, and SiO2 was prepared by sol–gel method. The resultant catalyst ((NH4)3PW12O40-SiO2, 3.38wt%) having W/Si molar ratio of 2/8 enabled to proceed ring-opening polymerizations of tetrahydrofuran (THF), ε-caprolactone (CL), and glycidyl phenyl ether (GPE) to give the corresponding poly(THF), poly(CL), and poly(GPE) having number-average molecular weights (Mn) of 6610, 4010, and 2370 with polydispersity index (Mw/Mn) of 1.57, 1.36, and 1.49 in 24%, 88%, and 59% yields, respectively. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) spectra of poly(CL) and poly(GPE) exhibited that Brønsted acid induced from (NH4)3PW12O40-SiO2 is the only one species that initiates the polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Scheme 3

Similar content being viewed by others

References

  1. Rudolph T, Kempe K, Crotty S, Paulus RM, Schubert US, Krossing I, Schacher FH (2013) A strong cationic Brønsted acid,[H(OEt2)2][Al{OC(CF3)3}4], as an efficient initiator for the cationic ring-opening polymerization of 2-alkyl-2-oxazolines. Polym Chem 4(3):495–505

    Article  CAS  Google Scholar 

  2. Penczek S (2000) Cationic ring-opening polymerization (CROP) major mechanistic phenomena. Journal of Polymer Science Part A: Polym Chem 38(11):1919–1933

    Article  CAS  Google Scholar 

  3. Nuyken O, Pask SD (2013) Ring-opening polymerization—an introductory review. Polymers 5(2):361–403

    Article  CAS  Google Scholar 

  4. Jerca VV, Nicolescu FA, Vasilescu DS, Vuluga DM (2011) Synthesis of a new oxazoline macromonomer for dispersion polymerization. Polym Bull 66(6):785–796

    Article  CAS  Google Scholar 

  5. Jerca VV, Lava K, Verbraeken B, Hoogenboom R (2016) Poly (2-cycloalkyl-2-oxazoline)s: high melting temperature polymers solely based on Debye and Keesom van der Waals interactions. Polym Chem 7(6):1309–1322

    Article  CAS  Google Scholar 

  6. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BG, Hedrick JL (2007) Organocatalytic ring-opening polymerization Chem rev 107:5813–5840

    CAS  PubMed  Google Scholar 

  7. Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98(1):171–198

    Article  CAS  PubMed  Google Scholar 

  8. Corma A (1997) Solid acid catalysts. Curr Opin Solid State Mater Sci 2(1):63–75

    Article  CAS  Google Scholar 

  9. Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102(10):3641–3666

    Article  CAS  PubMed  Google Scholar 

  10. Yamaguchi T (1990) Recent progress in solid superacid. Appl Catal 61(1):1–25

    Article  CAS  Google Scholar 

  11. Moriya O, Yamamoto SI, Sugizaki T, Maeda J, Kamejima A, Kumon T, Kageyama T (2005) Ring opening polymerization of oxetane by use of silicate gel of rare earth metal. Polym J 37(4):262–269

    Article  CAS  Google Scholar 

  12. Harrane A, Naar N, Belbachir M (2007) Ring opening polymerization of oxetane by the use of a montmorillonite clay as catalyst. Mater Lett 61(17):3555–3558

    Article  CAS  Google Scholar 

  13. Yahiaoui A, Belbachir M, Soutif JC, Fontaine L (2005) Synthesis and structural analyses of poly (1, 2-cyclohexene oxide) over solid acid catalyst. Mater Lett 59(7):759–767

    Article  CAS  Google Scholar 

  14. Kageyama K, Ogino SI, Aida T, Tatsumi T (1998) Mesoporous zeolite as a new class of catalyst for controlled polymerization of lactones. Macromolecules 31(13):4069–4073

    Article  CAS  Google Scholar 

  15. Setoyama T, Kobayashi M, Kabata Y, Kawai T, Nakanishi A (2002) New industrial process of PTMG catalyzed by solid acid. Catal today 73(1–2):29–37

    Article  CAS  Google Scholar 

  16. Yang HJ, Yoon SW, Park HS, Lee KH, Hur NH (2019) Highly efficient ring-opening polymerization of tetrahydrofuran by anhydrous ferric chloride. J Appl Polym Sci 136(39):47999

    Article  CAS  Google Scholar 

  17. Aouissi A, Al-Othman ZA, Al-Anezi H (2010) Reactivity of heteropolymolybdates and heteropolytungstates in the cationic polymerization of styrene. Molecules 15(5):3319–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liao XM, Chu W, Li Y, Zhou FD, Luo SZ (2009) Effects of support pore size on new Cs2.5H0.5PW12O40/SiO2 catalysts for the ring-opening polymerization of tetrahydrofuran. Chin Chem Lett 20(3):344–347

    Article  CAS  Google Scholar 

  19. Aoshima A, Tonomura S, Yamamatsu S (1990) New synthetic route of polyoxytetramethyleneglycol by use of heteropolyacids as catalyst. Polym Adv Technol 1(2):127–132

    Article  CAS  Google Scholar 

  20. Morinaga H, Nakajima L, Nishioka Y, Yamamoto H, Hatayama M, Nakabayashi A, Nakabayashi H (2016) Polymer synthesis by solid-acid catalyst based on heteropolyacid ammonium salt. Polym Bull 73(2):435–448

    Article  CAS  Google Scholar 

  21. Izumi Y, Ogawa M, Urabe K (1995) Alkali metal salts and ammonium salts of Keggin-type heteropolyacids as solid acid catalysts for liquid-phase Friedel-Crafts reactions. Appl Catal A: General 132(1):127–140

    Article  CAS  Google Scholar 

  22. Hayashi H, Moffat JB (1983) Conversion of methanol into hydrocarbons over ammonium 12-tungstophosphate. J Catal 83(1):192–204

    Article  CAS  Google Scholar 

  23. Nishi H, Moffat JB (1989) Catalysis by microporous heteropoly oxometalates: The conversion of 1-methyl-2-ethylbenzene. J mol catal 51(2):193–207

    Article  CAS  Google Scholar 

  24. Dewitt AC, Herwig KW, Lombardo SJ (2005) Adsorption and diffusion behavior of ethane and ethylene in sol-gel derived microporous silica. Adsorption 11(5–6):491–499

    Article  CAS  Google Scholar 

  25. Lee CJ, Kim GS, Hyun SH (2002) Synthesis of silica aerogels from waterglass via new modified ambient drying. J mat sci 37(11):2237–2241

    Article  CAS  Google Scholar 

  26. Matsuda K, Tanaka Y, Sakai, T (1973) Process for polymerizing tetrahydrofuran, US patent, US3864287A

  27. Piskun YA, Vasilenko IV, Kostjuk SV, Zaitsev KV, Zaitseva GS, Karlov SS (2010) Titanium complexes of dialkanolamine ligands as initiators for living ring-opening polymerization of ε-caprolactone. J Polym Sci Part A: Polym Chem 48(5):1230–1240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the Nanotechnology Platform Program (Molecule and Material Synthesis) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hisatoyo Morinaga or Hirotoshi Nakabayashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 506 kb)

Supplementary file2 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morinaga, H., Nishio, F., Yamashima, S. et al. Synthesis of polymers via cationic ring-opening polymerization using (NH4)3PW12O40-SiO2 composite catalyst. J Polym Res 27, 325 (2020). https://doi.org/10.1007/s10965-020-02279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02279-y

Keywords

Navigation