Skip to main content

Advertisement

Log in

Biodiversity and community composition of native bee populations vary among human-dominated land uses within the seasonally dry tropics

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Human-dominated land uses constitute a large and growing proportion of global land cover, so understanding their potential to support biodiversity is critical for effective conservation. Here, we asked how bee diversity and community composition differ among common human dominated land uses (teak plantations, coffee agroforestry, and pastures) during wet and dry seasons in the Nicoya Peninsula of Costa Rica. We sampled over two years using blue vane and pan traps, collecting 47 genera and 119 species and morphospecies of bees. We observed similar numbers of bees in coffee farms and high elevation pastures, but collected substantially more bees in low elevation pastures relative to teak plantations during both seasons. Shannon diversity was greatest in pastures, with an estimated 20 more common species in low elevation pastures relative to teak plantations and estimated 13 more common species in high elevation pastures relative to coffee. Teak plantations were dominated by distinct taxa during the dry season compared to the other land uses, hosting stem-nesting genera such as Ceratina but lacking oil collecting groups like Centris and Epicharis. Our findings reflect the seasonal availability of habitat: teak is managed as a monoculture and blooms during the wet season, when fewer bees are active. In contrast, shade trees in pastures provide nectar, pollen, and nesting substrates throughout the year.

Implications for insect conservation:

Our study provides baseline information on regional bee biodiversity in a tropical agroecosystem, demonstrating the influence of both season and land use on an important group of pollinators in this system. To avoid biodiversity trade-offs, policies that incentivize the establishment of teak plantations as a form of reforestation should incorporate land management that enhances habitat of important insects such as native bees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Reference collection data will be made available upon publication.

References

  • Archer CR, Pirk CWW, Carvalheiro LG, Nicolson SW (2014) Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines. Oikos 123:401–407

    Google Scholar 

  • Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18:834–843

    Google Scholar 

  • Bartomeus I, Stavert JR, Ward D, Aguado O (2019) Historical collections as a tool for assessing the global pollination crisis. Phil Trans Royal Soc Lond B, Biol Sci 374:20170389

    Google Scholar 

  • Brockerhoff EG, Jactel H, Parotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951

    Google Scholar 

  • Barlow J, Gardner TA, Araujo IS, Ávila-Pires TC, Bonaldo AB, Costa JE, Esposito MC, Ferreira LV, Hawes J, Hernandez MI, Hoogmoed MS (2007) Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc Natl Acad Sci 104:18555–18560

    CAS  Google Scholar 

  • Bawa KS, Kress WJ, Nadkarni NM, Lele S, Raven PH, Janzen DH, Lugo AE, Ashton PS, Lovejoy TE (2004) Tropical ecosystems into the 21st century. Science 306:227–228

    CAS  Google Scholar 

  • Bennett MT (2008) China's sloping land conversion program: institutional innovation or business as usual? Ecol Econ 65:699–711

    Google Scholar 

  • Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23:261–267

    Google Scholar 

  • Brosi BJ, Daily GC, Shih TM, Oviedo F, Durán G (2008) The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol 45:773–783

    Google Scholar 

  • Bremer LL, Farley KA (2010) Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers Conserv 19:3893–3915

    Google Scholar 

  • Calvo-Alvarado J, McLennan B, Sánchez-Azofeifa A, Garvin T (2009) Deforestation and forest restoration in Guanacaste, Costa Rica: putting conservation policies in context. For Ecol Manage 258:931–940

    Google Scholar 

  • Caudill SA, Brokaw JN, Doublet D, Rice RA (2017) Forest and trees: shade management, forest proximity and pollinator communities in southern Costa Rica coffee agriculture. Renew Agric Food Sys 32:417–427

    Google Scholar 

  • Chazdon RL, Harvey CA, Komar O, Griffith DM, Ferguson BG, Martínez-Ramos M, Morales H, Nigh R, Soto-Pinto L, Van Breugel M, Philpott SM (2009) Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 41:142–153

    Google Scholar 

  • DeFries R, Hansen A, Turner BL, Reid R, Liu J (2007) Land use change around protected areas: management to balance human needs and ecological function. Ecol Appl 17:1031–1038

    Google Scholar 

  • De Marco P, Coelho FM (2004) Services performed by the ecosystem: forest remnants influence agricultural cultures' pollination and production. Biodivers Conserv 13:1245–1255

    Google Scholar 

  • De Palma A, Abrahamczyk S, Aizen MA, Albrecht M, Basset Y, Bates A, Cruz-López L (2016) Predicting bee community responses to land-use changes: effects of geographic and taxonomic biases. Sci Rep- UK 6:1–14

    Google Scholar 

  • Droege S (2008) The very handy manual: how to catch and identify bees and manage a collection. USGS Native Bee Inventory and Monitoring Lab: 1-65.

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B (2014) Defaunation in the anthropocene. Science 345:401–406

    CAS  Google Scholar 

  • FAO (Food and Agriculture Organization) 2015 Global teak trade in the aftermath of Myanmar’s log export ban. Rome, Italy. https://www.fao.org/3/a-i5023e.pdf

  • Flynn DF, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH (2005) Global consequences of land use. Science 309:570–574

    CAS  Google Scholar 

  • FONAFIFO (Fondo Nacional de Financiamiento Forestal) (2013) Distribución de hectáreas contratadas en pago por servicios ambientales, por año y por modalidad: Período 1997–2012. https://www.fonafifo.go.cr/es/servicios/estadisticas-de-psa/

  • FONAFIFO (Fondo Nacional de Financiamiento Forestal) (2020a) Pagos de Servicios Ambientales. https://www.fonafifo.go.cr/es/servicios/pago-de-servicios-ambientales

  • FONAFIFO (Fondo Nacional de Financiamiento Forestal) (2020b) Programa de Pago por Servicios Ambientales: Distribución de las hectáreas contratadas, por año y por actividad. Período 2010-2019. https://www.fonafifo.go.cr/es/servicios/estadisticas-de-psa/

  • Frankie GW, Haber WA, Opler PA, Bawa KS, (1983) Characterstics and organization of the large bee pollination system in the Costa Rican dry forest. Handb Exp Pollinat Biol 411–447

  • Frankie GW, Haber WA, Opler PA, Bawa, KS (2004) Flowering phenology and pollination systems diversity in the seasonal dry forest. In: Frankie GW, Mata A, Vinson S Bradleigh (ed) Biodiversity conservation in costa rica: learning the lessons in a seasonally dry forest. University of California Press, Berkeley and Los Angeles, CA, pp 17-29

  • Freitas BM, Imperatriz-Fonseca VL, Medina LM, Kleinert ADMP, Galetto L, Nates-Parra G, Quezada-Euán JJG (2009) Diversity, threats and conservation of native bees in the Neotropics. Apidologie 403:332–346

    Google Scholar 

  • Galbraith SM, Hall TE, Tavárez HS, Kooistra CM, Ordoñez JC, Bosque-Pérez NA (2017) Local ecological knowledge reveals effects of policy-driven land use and cover change on beekeepers in Costa Rica. Land Use Policy 69:112–122

    Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O and Bartomeus I (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

  • Griswold T, Parker FD, Hanson PE, (2000) An inventory of the bees of Costa Rica: the myth of the depauperate tropics. In: Proceedings of the Sixth International Conference on Apiculture in Tropical Climates, 152-156

  • Gutiérrez C, MarioSepúlveda J, Ibrahim C, López MT, Villanueva D, Rodríguez C (2014) Caracterización de fincas ganaderas con y sin pago por servicios ambientales bajo el marco de los capitales de la comunidad en la península de Nicoya, Costa Rica (No. Thesis C266b). Masters Thesis: CATIE

  • Harvey CA, Villanueva C, Esquivel H, Gómez R, Ibrahim M, Lopez M, Martinez J, Muñoz D, Restrepo C, Saénz JC, Villacís J (2011) Conservation value of dispersed tree cover threatened by pasture management. For Ecol Manage 261:1664–1674

    Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54(2):427–432

    Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456

    Google Scholar 

  • Hallett JT, Díaz-Calvo J, Villa-Castillo J, Wagner MR (2011) Teak plantations: economic bonanza or environmental disaster? J For 109:288–292

    Google Scholar 

  • Harrison T, Gibbs J, Winfree R (2018) Forest bees are replaced in agricultural and urban landscapes by native species with different phenologies and life-history traits. Glob Chang Biol 24:287–296

    Google Scholar 

  • Harvey CA, Haber WA (1998) Remnant trees and the conservation of biodiversity in Costa Rican pastures. Agroforestry Systems 44:37–68

    Google Scholar 

  • Harvey CA, Komar O, Chazdon R, Ferguson BG, Finegan B, Griffith DM, Martínez-Ramos M, Morales H, Nigh R, Soto-Pinto L, Van Breugel M (2008) Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv Biol 22:8–15

    Google Scholar 

  • Healey SP, Gara RI (2003) The effect of a teak (Tectona grandis) plantation on the establishment of native species in an abandoned pasture in Costa Rica. For Ecol Manage 176:497–507

    Google Scholar 

  • Heithaus ER (1979) Community structure of neotropical flower visiting bees and wasps: diversity and phenology. Ecology 60:190–202

    Google Scholar 

  • INEC (Instituto Nacional de Estadística y Censos (2015) VI Censo Nacional Agropecuario: Resultados Generales. San José, Costa Rica

    Google Scholar 

  • Janzen DH (1967) Synchronization of sexual reproduction of trees within the dry season in Central America. Evolution 21:620–637

    Google Scholar 

  • Jha S, Vandermeer JH (2010) Impacts of coffee agroforestry management on tropical bee communities. Biol Conserv 143:1423–1431

    Google Scholar 

  • Jha S, Bacon CM, Philpott SM, Ernesto Mendez V, Läderach P, Rice RA (2014) Shade coffee: update on a disappearing refuge for biodiversity. BioScience 64:416–428

    Google Scholar 

  • Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO global forest resources assessment 2015. For Ecol Manage 352:9–20

    Google Scholar 

  • Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, Bommarco R, Brittain C, Burley AL, Cariveau D, Carvalheiro LG (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599

    Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274:303–313

    Google Scholar 

  • Mata A, Echeverria J (2004) Introduction In: Frankie GW, Mata A, Vinson S Bradleigh (ed) Biodiversity Conservation in Costa Rica: Learning the lessons in a seasonally dry forest. University of California Press, Berkeley and Los Angeles, pp 1-17

  • Michener CD, McGinley RJ, Danforth BN (1994) The bee genera of North and Central America (Hymenoptera: Apoidea) Smithsonian Institution Press, Washington

  • Milder JC, DeClerck FA, Sanfiorenzo A, Sánchez DM, Tobar DE, Zuckerberg B (2010) Effects of farm and landscape management on bird and butterfly conservation in western Honduras. Ecosphere 1:1–22

    Google Scholar 

  • Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505

    Google Scholar 

  • Muñoz-Piña C, Guevara A, Torres JM, Braña J (2008) Paying for the hydrological services of Mexico's forests: analysis, negotiations and results. Ecol Econ 65:725–736

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H, Oksanen MJ (2013) Package ‘vegan’: Community ecology package. https://cran.ism.ac.jp/web/packages/vegan/vegan.pdf

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Google Scholar 

  • Pagiola S (2008) Payments for environmental services in Costa Rica. Ecol Econ 65:712–724

    Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344

  • Perfecto I, Rice RA, Greenberg R, Van der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity: shade coffee plantations can contain as much biodiversity as forest habitats. BioScience 46:598–608

    Google Scholar 

  • Pohl RW (1983) Hyparrhenia rufa (Jaragua). In: Janzen DH (ed) Costa Rican Natural History. University of Chicago Press, Chicago, p 256

    Google Scholar 

  • Prendergast KS, Menz MH, Dixon KW, Bateman PW (2020) The relative performance of sampling methods for native bees: an empirical test and review of the literature. Ecosphere 11:e03076

    Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Google Scholar 

  • Prado SG, Ngo HT, Florez JA, Collazo JA (2017) Sampling bees in tropical forests and agroecosystems: A review. J Insect Conserv 21:1–18

    Google Scholar 

  • Quinn GP, Keough MJ, Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, New York, USA

    Google Scholar 

  • Roubik D (1989) Ecology and natural history of tropical bees. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Samnegård U, Hambäck PA, Eardley C, Nemomissa S, Hylander K (2015) Turnover in bee species composition and functional trait distributions between seasons in a tropical agricultural landscape. Agric Ecosyst Environ 211:185–194

    Google Scholar 

  • SEPSA (Secretaría Ejecutiva de Planificación Sectorial Agropecuaria) (2019) Informe: Comercio Exterior del Sector Agropecuario 2017-2018. Sector de Desarollo Agropecuario y Rural, Costa Rica. https://www.sepsa.go.cr/docs/2019-004-Comercio_Exterior_Sector_Agropecuario_2017-2018.pdf

  • Serna L, Escobar D, Tapasco J, Arango J, Chirinda N, Chacon M, Segura J, Villanueva C (2017) Challenges and opportunities for the development of the livestock NAMA in Colombia and Costa Rica. CCAFS Info Note. Wageningen, Netherlands: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

  • Stephen WP, Rao S (2005) Unscented color traps for non-Apis bees (Hymenoptera: Apiformes). J Kansas Entomol Soc 78:373–380

    Google Scholar 

  • Stephen WP, Rao S (2007) Sampling native bees in proximity to a highly competitive food resource (Hymenoptera: Apiformes). J Kans Entomol Soc 80:369–376

    Google Scholar 

  • Stephens SS, Wagner MR (2007) Forest plantations and biodiversity: a fresh perspective. J For 105:307–313

    Google Scholar 

  • Stroup WW (2014) Rethinking the analysis of non-normal data in plant and soil science. Agron J 106:1–17

    Google Scholar 

  • Tangmitcharoen S, Takaso T, Siripatanadilox S, Tasen W, Owens JN (2006) Behavior of major insect pollinators of teak (Tectona grandis Lf): a comparison of clonal seed orchard versus wild trees. For Ecol Manage 222:67–74

    Google Scholar 

  • Tangmitcharoen S, Tasen W, Owens JN, Bhodthipuks J (2009) Fruit set as affected by pollinators of teak (Tectona grandis Lf) at two tree spacings in a seed orchard. For Res 31:255–259

    Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8:857–874

    Google Scholar 

  • Tylianakis JM, Klein AM, Tscharntke T (2005) Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient. Ecology 86:3296–3302

    Google Scholar 

  • Vallejo Á, Gutiérrez I, Chacón M, van Rooij W, Dávila MS, Arce JJC, Villalobos R (2006) Biodiversity-human well-being linkages for teak farms in Hojancha, Nicoya peninsula. Costa Rica, CATIE, Turrialba, Costa Rica

    Google Scholar 

  • Vinson SB, O’Keefe, ST, Frankie GW (2004) The conservation values of bees and ants in the Costa Rican dry forest. In: Frankie, GW, Mata, A, Vinson, S Bradleigh (ed) Biodiversity conservation in Costa Rica: learning the lessons in a seasonally dry forest. University of California Press, Berkeley and Los Angeles, pp 67–79

  • Watson J, Venter O (2017) A global plan for nature conservation. Nature 550:48–49

    CAS  Google Scholar 

  • Westphal C, Bommarco R, Carré G, Lamborn E, Morison N, Petanidou T, Potts SG, Roberts SP, Szentgyörgyi H, Tscheulin T, Vaissière BE (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol Monogr 78:653–671

    Google Scholar 

  • Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees' responses to anthropogenic disturbance. Ecology 90:2068–2076

    Google Scholar 

  • Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst 42:1–22

    Google Scholar 

  • Wunder S (2015) Revisiting the concept of payments for environmental services. Ecol Econ 117:234–243

    Google Scholar 

  • Yue S, Brodie JF, Zipkin EF, Bernard H (2015) Oil palm plantations fail to support mammal diversity. Ecol Appl 25:2285–2292

    Google Scholar 

Download references

Acknowledgements

This research was funded by grants from the National Science Foundation Integrative Graduate Education and Research Traineeship and the United States Agency for International Development Borlaug Fellowship in Food Security. We thank the many landowners who granted us to access their farms for this study, the National System of Conservation Areas office in Hojancha and Emel Rodríguez for logistical support, and Facundo Mendoza Castrillo for field assistance.

Funding

This research was funded by grants from the National Science Foundation Integrative Graduate Education and Research Traineeship (# 0903479) and the United States Agency for International Development Borlaug Fellowship in Food Security (# 12724). Author Galbraith also received support from the United States Department of Agriculture National Institute of Food and Agriculture (# 2018-67013-27535) while writing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara M. Galbraith.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galbraith, S.M., Griswold, T., Price, W.J. et al. Biodiversity and community composition of native bee populations vary among human-dominated land uses within the seasonally dry tropics. J Insect Conserv 24, 1045–1059 (2020). https://doi.org/10.1007/s10841-020-00274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-020-00274-8

Keywords

Navigation