Skip to main content
Log in

Asymptotic stability of stationary solutions to the drift-diffusion model with the fractional dissipation

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We study the drift-diffusion equation with fractional dissipation \((-\varDelta )^{\theta /2}\) arising from a model of semiconductors. First, we prove the existence and uniqueness of the small solution to the corresponding stationary problem in the whole space. Moreover, it is proved that the unique solution of non-stationary problem exists globally in time and decays exponentially, if initial data are suitably close to the stationary solution and the stationary solution is sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Chae, J. Lee, Global well-posedness in the super-critical disspative quasi-geostrophic equations, Comm. Math. Phys., 233, 297–311 (2003)

    Article  MathSciNet  Google Scholar 

  2. J. Y. Chemin, Perfect incompressible fluids, New York, Oxford Press, 1988.

    Google Scholar 

  3. J. Y. Chemin, N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes J. Diff. Equ., 121, 314–328 (1995)

    Article  Google Scholar 

  4. Q. Chen, C. Miao, Z. Zhang, New Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation, Comm. Math. Phys., 271, 821–838 (2007).

    Article  MathSciNet  Google Scholar 

  5. P. Constantin, A. Majda, E. Tabak, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity, 7 , 1495–1533 (1994)

    Article  MathSciNet  Google Scholar 

  6. P. Constantin, D. Cordoba, J. Wu, On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J., 50, 97–107 (2001)

    Article  MathSciNet  Google Scholar 

  7. P. Constantin, J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30, 937–948 (1999)

    Article  MathSciNet  Google Scholar 

  8. A. Cordoba, D. Cordoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249, 511–528 (2004)

    Article  MathSciNet  Google Scholar 

  9. R. Danchin, Density-dependent incompressible vicious fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect., A 133, 1311–1334 (2003)

    Article  MathSciNet  Google Scholar 

  10. H. Dong, D. Li, On the 2D critical supercritical dissipative quasi-geostrophic equation in Besov space, J. Diff. Equ., 248, 2684–2702 (2010)

    Article  MathSciNet  Google Scholar 

  11. T. Iwabuchi, Global solutions for the critical Burgers equation in the Besov spaces and the large time behavior, J. Math. Anal. Appl., 379, 930–948 (2011)

    Article  MathSciNet  Google Scholar 

  12. T. Iwabuchi, Global well-posedness for Keller-Segel system in Besov type spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32, 687–713 (2015)

    Article  MathSciNet  Google Scholar 

  13. N. Ju, The maximum principle and the attractor for the dissipative 2D quasi-geostrophic equations, Comm. Math. Phys., 255, 161–181 (2005)

    Article  MathSciNet  Google Scholar 

  14. R. Kobayashi, M. Kurokiba and S. Kawashima, Stationary solutions to the drift-diffusion model in the whole spaces, Math. Methods Appl. Sci., 32, 640–652 (2009)

    Article  MathSciNet  Google Scholar 

  15. R. Kobayashi, M. Yamamoto and S. Kawashima, Asymptotic stability of stationary solutions to the drift-diffusion model in the whole space, ESAIM Control Optim. Calc. Var., 32, 1097–1121 (2012).

    Article  MathSciNet  Google Scholar 

  16. M. Kurokiba, T. Ogawa, Wellposedness for the drift-diffusion system in \(L^p\) arising from the semiconductor device simulation, J. Math. Anal. Appl., 342, 1052–1067 (2008)

    Article  MathSciNet  Google Scholar 

  17. T. Matsumoto, N. Tanaka, Lipschitz semigroup approach to drift-diffusion systems, RIMS Kokyuroku Bessatsu, B15, 147–177 (2009)

    MathSciNet  MATH  Google Scholar 

  18. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  19. H. Miura, Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space, Comm. Math. Phys., 267, 141–157 (2006)

    Article  MathSciNet  Google Scholar 

  20. M.S. Mock, On equations describing steady-state carrier distributions in a semiconductor device, Comm. Pure Appl. Math., 25, 781–792 (1972)

    Article  MathSciNet  Google Scholar 

  21. M.S. Mock, An initial value problem from semiconductor device theory, SIAM J. Math. Anal., 5, 597–712 (1974)

    Article  MathSciNet  Google Scholar 

  22. M.S. Mock, Asymptotic behavior of solutions of transport equations for semiconductor devices, J. Math. Anal. Appl., 49, 215–225 (1975)

    Article  MathSciNet  Google Scholar 

  23. T. Ogawa, S. Shimizu, The drift-diffusion system in two-dimensional critical Hardy space, J. Funct. Anal., 255, 1107–1138 (2008)

    Article  MathSciNet  Google Scholar 

  24. T. Ogawa, S. Shimizu, End-point maximal regularity and its application to two-dimensional Keller-Segel system, Math. Z., 264, 601–628 (2010)

    Article  MathSciNet  Google Scholar 

  25. T. Ogawa, M. Yamamoto, Asymptotic behavior of solutions to drift-diffusion system with generalized dissipation, Math. Models Methods Appl. Sci., 19, 939–967 (2009)

    Article  MathSciNet  Google Scholar 

  26. Y. Sugiyama, M. Yamamoto, K. Kato, Local and global solvability and blow up for the drift-diffusion equation with the fractional dissipation with the critical space, J. Differential Equations, 258, 2983–3010 (2015)

    Article  MathSciNet  Google Scholar 

  27. H. Triebel, Theory of function spaces, Monograph in Mathematics, 78, Basel: Birkhäuser Verlag, (1978)

    Google Scholar 

  28. J. Wu, Global Solutions of the 2D Dissipative Quasi-Geostrophic Equation in Besov Spaces, SIAM J. Math. Anal., 36 , 1014–1030 (2004)

    Article  MathSciNet  Google Scholar 

  29. J. Wu, The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation, Nonlinearity 18, 139–154 (2005)

    Article  MathSciNet  Google Scholar 

  30. J. Wu, Lower bounds of an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces, Comm. Math. Phys., 263, 803–831 (2005)

    Article  MathSciNet  Google Scholar 

  31. W. P. Ziemer, Weakly differentiable functions, Graduate Texts in Math., 120, Springer-Verlag, (1989)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referee for his/her carefully reading. Y. Sugiyama’s work is partially supported by JSPS Grant-in-Aid for Early-Career Scientists #19K14573. M. Yamamoto’s work is partially supported by JSPS Grant-in-Aid for Early-Career Scientists #19K03560.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuusuke Sugiyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by JSPS KAKENHI Grant Numbers 19K14573 and 19K03560.

Proof of nonlinear estimates in the Besov space

Proof of nonlinear estimates in the Besov space

1.1 Proofs of Lemma 2

We only prove (5). (6) can be proved in completely same way as in the proof of (5). The paraproduct between f and g is defined by

$$\begin{aligned} T_f g =\sum _{j \in {\mathbb {Z}}} S_{j-1} f \varDelta _j g, \end{aligned}$$

where \(S_{j} f =\sum _{k \le j-1} \varDelta _k f\). We have the following Bony’s decomposition:

$$\begin{aligned} fg=T_f g + T_g f + R(f,g), \end{aligned}$$

where \(R(f,g)=\sum _{j\in {\mathbb {Z}}} \varDelta _j f {\tilde{\varDelta }}_j g\) and \({\tilde{\varDelta }}_j =\varDelta _{j-1} + \varDelta _j + \varDelta _{j+1}\). From the quasiorthogonal property that

$$\begin{aligned} \varDelta _j \varDelta _k f=0 \ \ \text{ if } \ |j-k| \ge 2, \end{aligned}$$

we see that \({\mathcal {F}}[S_{k-1} f \varDelta _k g ]\) and \({\mathcal {F}} [\varDelta _k f {\tilde{\varDelta }}_k ]\) are supported by \( 2^{k-2} \le |\xi | \le 2^{k+2}\) and \(|\xi | \le 2^{k+3}\), respectively. Hence, we have

$$\begin{aligned} \varDelta _j (fg)&= \sum _{|k-j| \le 3} \varDelta _j (S_{k-1} f) \varDelta _k g) + \sum _{|k-j| \le 3} \varDelta _j (S_{k-1} g \varDelta _k f) \nonumber \\&\quad + \sum _{k\ge j-4} \varDelta _j (\varDelta _k f {\tilde{\varDelta }}_k g). \end{aligned}$$
(68)

Since \(\varDelta _j\) is bounded, we obtain

$$\begin{aligned} \Vert \varDelta _j (S_{k-1}f \varDelta _k g) \Vert _{L^p}&\le \Vert S_{k-1}f \Vert _{L^\infty } \Vert \varDelta _k g \Vert _{L^p}\\&\le C \Vert \varDelta _k g \Vert _{L^p} \sum _{k' \le k} 2^{\left( \frac{n}{p}-s_1\right) k'} 2^{s_1 k'} \Vert \varDelta _{k'} f\Vert _{L^p} \\&\le C \Vert \varDelta _k g \Vert _{L^p} \Vert f \Vert _{{\dot{B}}^{s_1} _{p,q}} \sum _{k' \le k} 2^{\left( \frac{n}{p}-s_1\right) k'} \\&\le C 2^{(\frac{n}{p}-s_1) k} \Vert f \Vert _{{\dot{B}}^{s_1} _{p,q}} \Vert \varDelta _k g \Vert _{L^p}, \end{aligned}$$

here we used \(s_1 < n/p\) in the computation of \(\sum _{k' \le k} 2^{(\frac{n}{p}-s_1) k'}\). In the case that \(s_1 =n/p\), we estimate \( \sum _{k' \le k} 2^{(\frac{n}{p}-s_1) k'} 2^{s_1 k'} \Vert \varDelta _{k'} f\Vert _{L^p}\) by \(\Vert f \Vert _{{\dot{B}}^{s_1} _{p,1}}\) in the second line of the above inequalities. Thus, we have for the first term of the right-hand side in (68)

$$\begin{aligned} 2^{\left( s_1 + s_2 -\frac{n}{p}\right) j} \left\| \sum _{|k-j| \le 3} \varDelta _j (S_{k-1} f) \varDelta _k g) \right\| _{L^p}&\le C \Vert f \Vert _{{\dot{B}}^{s_1} _{p,q}} \sum _{|j-k|\le 3} 2^{s_2 k} \Vert \varDelta _k g \Vert _{L^p} \\&\le C c_{j,q} \Vert f \Vert _{{\dot{B}}^{s_1} _{p,q}} \Vert g \Vert _{{\dot{B}}^{s_2} _{p,q}}, \end{aligned}$$

where \(\{c_{j,q} \}_{j \in {\mathbb {Z}}}\) is a positive sequence such that \(\sum _{j \in {\mathbb {Z}}} c_{j,q} ^q \le 1\). Hence, we have

$$\begin{aligned} \Vert T_f g\Vert _{{\dot{B}}^{s_1 + s_2 - n/p}_{p,q}} \le C \Vert f \Vert _{{\dot{B}}^{s_1} _{p,q}}\Vert g \Vert _{{\dot{B}}^{s_2} _{p,q}}. \end{aligned}$$

In the same way as above, we can show that

$$\begin{aligned} \Vert T_g f\Vert _{{\dot{B}}^{s_1 + s_2 - n/p}_{p,q}} \le C \Vert f \Vert _{{\dot{B}}^{s_1} _{p,q}}\Vert g \Vert _{{\dot{B}}^{s_2} _{p,q}}. \end{aligned}$$

We estimate R(fg). Since \(p \ge 2\), from (3) in Lemma 1, we obtain that

$$\begin{aligned} \Vert \varDelta _j (\varDelta _k f {\tilde{\varDelta }}_k g) \Vert _{L^p} \le 2^{\frac{n}{p}j} \Vert \varDelta _j (\varDelta _k f {\tilde{\varDelta }}_k g)\Vert _{L^{p/2}} \le 2^{\frac{n}{p}j} \Vert \varDelta _k f\Vert _{L^p} \Vert {\tilde{\varDelta }}_k g\Vert _{L^{p}}, \end{aligned}$$

which implies that the third term of the right-hand side in (68) is estimated as follows

$$\begin{aligned} 2^{\left( s_1 + s_2 -\frac{n}{p}\right) j} \left\| \sum _{k \ge j- 4} \varDelta _j (\varDelta _k f {\tilde{\varDelta }}_k g) \right\| _{L^p}&\le C \sum _{k\ge j-4} 2^{(s_1 + s_2)(j- k)} 2^{s_1 k} \\&\quad \times \Vert \varDelta _k f\Vert _{L^p} 2^{s_2 k} \Vert {\tilde{\varDelta }}_k g\Vert _{L^{p}} \\&\le C \Vert f \Vert _{{\dot{B}}^{s_1}_{p,q}} \sum _{k\ge j-4} 2^{(s_1 + s_2)(j- k) } 2^{s_2 k} \\&\quad \times \Vert {\tilde{\varDelta }}_k g\Vert _{L^{p}}. \end{aligned}$$

Taking \(l^q\)-norm with \(j \in {\mathbb {Z}}\), since \(s_1 + s_2 >0\), we have from Young’s inequality for the sum

$$\begin{aligned} \Vert R (f,g)\Vert _{{\dot{B}}^{s_1 + s_2 -\frac{n}{p}} _{p,q}} \le C \Vert f \Vert _{{\dot{B}}^{s_1} _{p,q}}\Vert g \Vert _{{\dot{B}}^{s_2} _{p,q}}. \end{aligned}$$
(69)

We note that the assumption that \(s_1, s_2 \le n/2\) is not required in the proof of (69). We complete the proof of Lemma 2.

1.2 Proofs of Lemma 3

From Bony’s decomposition, the commutator is written by

$$\begin{aligned} {[}f, \varDelta _j] g= [T_f, \varDelta _j ]g +T_{\varDelta _j g} f + R(\varDelta _j g, f)-\varDelta _j T_g f -\varDelta _j R(f,g). \end{aligned}$$

If f is a solenoidal vector filed and \(g=\nabla a\), the last term \(\varDelta _j R(f,g)\) is equal to \(\varDelta _j \nabla \cdot R(f, a)\). The solenoidal property is only used in the estimate of \(\varDelta _j \nabla \cdot R(f, a)\). Here we only give an estimate of \(\varDelta _j R(f,g)\). Since \(p\ge 2\) and \(\rho -\gamma +\frac{2n}{p} >1\), applying the estimate (69) with \(s_1 =\frac{n}{p} + \rho \) and \(s_2 = \frac{n}{p}-\gamma -1\), we have that

$$\begin{aligned} \Vert \varDelta _j R(f,g)\Vert _{L^p}&\le C c_{j,q} 2^{-j\left( \frac{n}{p}+\rho -1-\gamma \right) } \Vert f \Vert _{ {\dot{B}}^{\frac{n}{p}+\rho } _{p,q}} \Vert g \Vert _{ {\dot{B}}^{\frac{n}{p}-\gamma -1} _{p,q}} \\&\le C c_{j,q} 2^{-j\left( \frac{n}{p}+\rho -1-\gamma \right) } \Vert \nabla f \Vert _{ {\dot{B}}^{\frac{n}{p}+\rho -1} _{p,q}} \Vert g \Vert _{ {\dot{B}}^{\frac{n}{p}-\gamma -1} _{p,q}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiyama, Y., Yamamoto, M. Asymptotic stability of stationary solutions to the drift-diffusion model with the fractional dissipation. J. Evol. Equ. 21, 1383–1417 (2021). https://doi.org/10.1007/s00028-020-00628-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-020-00628-4

Keywords

Mathematics Subject Classification

Navigation