Skip to main content
Log in

A Unified Treatment of Agreement Coefficients and their Asymptotic Results: the Formula of the Weighted Mean of Weighted Ratios

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

A unified treatment of agreement coefficients for multiple raters is shown, where the chance-expected proportions of the Bennett et al.-type, Scott-type, its new variation, and Cohen-type are dealt with using full or lower-order agreement among raters. When only pairwise agreement is used for multiple raters, chance corrections of the Gwet-type and its new variation are also considered. For the unified treatment, Conger’s two formulas of the ratio of means and the mean of ratios are combined into a parent formula of the weighted mean of weighted ratios. The corresponding unified expressions of their new asymptotic results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti, A. (2013). Categorical data analysis (3rd ed.). Hoboken: Wiley.

    MATH  Google Scholar 

  • Bennett, E. M., Alpert, R., & Goldstein, A. C. (1954). Communications through limited-response questioning. The Public Opinion Quarterly, 18, 303–308.

    Article  Google Scholar 

  • Berry, K. J., Johnston, J. E., & Mielke Jr., P. W. (2005). Exact and resampling probability values for weighted kappa. Psychological Reports, 96, 243–252.

    Article  Google Scholar 

  • Berry, K. J., Johnston, J. E., & Mielke Jr., P. W. (2018). The measurement of association: A permutation statistical approach. Cham: Springer Nature Switzerland AG.

    Book  MATH  Google Scholar 

  • Brennan, R. L., & Prediger, D. (1981). Coefficient kappa: Some uses, misuses, and alternatives. Educational and Psychological Measurement, 41, 687–699.

    Article  Google Scholar 

  • Brown, L. D., Cai, T. T., & DasGupta, A. (2002). Confidence interval for a binomial proportion and asymptotic expansions. The Annals of Statistics, 30, 160–201.

    MathSciNet  MATH  Google Scholar 

  • Cicchetti, D. V., & Allison, T. (1971). A new procedure for assessing reliability of scoring EEG sleep recordings. American Journal of EEG Technology, 11, 101–109.

    Article  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.

    Article  Google Scholar 

  • Cohen, J. (1968). Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin, 70, 213–220.

    Article  Google Scholar 

  • Conger, A. J. (1980). Integration and generalization of kappas for multiple raters. Psychological Bulletin, 88, 322–328.

    Article  Google Scholar 

  • Donner, A., & Eliasziw, M. (1992). A goodness-of-fit approach to inference procedures for the kappa statistic: confidence interval construction, significance testing and sample size estimation. Statistics in Medicine, 11, 1511–1519.

    Article  Google Scholar 

  • Everitt, B. S. (1968). Moments of the statistics kappa and weighted kappa. The British Journal of Mathematical and Statistical Psychology, 21, 97–103.

    Article  Google Scholar 

  • Fisher, R. A. (1956). Statistical methods and scientific inference. Edinburgh: Oliver and Boyd.

    MATH  Google Scholar 

  • Fisher, R. A. (1970). Statistical methods for research workers (14th ed.). Edinburgh: Oliver & Boyd.

    MATH  Google Scholar 

  • Flack, V. F. (1987). Confidence intervals for the interrater agreement measure kappa. Communications in Statistics – Theory and Methods, 16, 953–968.

    Article  MATH  Google Scholar 

  • Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76, 378–382.

    Article  Google Scholar 

  • Fleiss, J. L., & Cicchetti, D. V. (1978). Inference about weighted kappa in the non-null case. Applied Psychological Measurement, 2, 113–117.

    Article  Google Scholar 

  • Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement, 33, 613–619.

    Article  Google Scholar 

  • Fleiss, J. L., Cohen, J., & Everitt, B. S. (1969). Large sample standard errors of kappa and weighted kappa. Psychological Bulletin, 72, 323–327.

    Article  Google Scholar 

  • Fleiss, J. L., & Davies, M. (1982). Jackknifing functions of multinomial frequencies, with an application to a measure of concordance. American Journal of Epidemiology, 115, 841–845.

    Article  Google Scholar 

  • Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and proportions (3rd ed.). Hoboken: Wiley.

    Book  MATH  Google Scholar 

  • Fleiss, J. L., Nee, J. C. M., & Landis, J. R. (1979). Large sample variance of kappa in the case of different sets of raters. Psychological Bulletin, 86, 974–977.

    Article  Google Scholar 

  • Grizzle, J. E., Starmer, C. F., & Koch, G. G. (1969). Analysis of categorical data by linear models. Biometrics, 25, 489–504.

    Article  MathSciNet  MATH  Google Scholar 

  • Guttman, L. (1946). The test-retest reliability of qualitative data. Psychometrika, 11, 81–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Gwet, K. L. (2002). Inter-rater reliability: dependency on trait prevalence and marginal homogeneity. In Statistical Methods for Inter-Rater Reliability Assessment No. 2.

    Google Scholar 

  • Gwet, K. L. (2008a). Computing inter-rater reliability and its variance in the presence of high agreement. British Journal of Mathematical and Statistical Psychology, 61, 29–48.

    Article  MathSciNet  Google Scholar 

  • Gwet, K. L. (2008b). Variance estimation of nominal-scale inter-rater reliability with random selection of raters. Psychometrika, 73, 407–430.

    Article  MathSciNet  MATH  Google Scholar 

  • Gwet, K. L. (2014). Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement among raters (4th ed.). Gaithersburg: Advanced Analytics.

    Google Scholar 

  • Hale, C. A., & Fleiss, J. L. (1993). Interval estimation under two study designs for kappa with binary classifications. Biometrics, 49, 523–533.

    Article  Google Scholar 

  • Hall, P. (1982). Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters. Biometrika, 69, 647–652.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P. (1992). The bootstrap and Edgeworth expansion. New York: Springer. Corrected printing, 1997.

  • Hallgren, K. A. (2012). Computing inter-rater reliability for observational data: an overview and tutorial. Tutorials in Quantitative Methods for Psychology, 8, 23–34.

    Article  Google Scholar 

  • Holley, W., & Guilford, J. P. (1964). A note on the G-index of agreement. Educational and Psychological Measurement, 24, 749–753.

    Article  Google Scholar 

  • Hsu, L. M., & Field, R. (2003). Interrater agreement measures: Comments on Kappan, Cohen’s kappa, Scott’s π and Aickin’s α. Understanding Statistics, 2, 205–219.

    Article  Google Scholar 

  • Hubert, L. (1977). Kappa revisited. Psychological Bulletin, 84, 289–297.

    Article  Google Scholar 

  • Janson, S., & Vegelius, J. (1979). On generalizations of the G index and the phi coefficient to nominal scales. Multivariate Behavioral Research, 14, 255–269.

    Article  Google Scholar 

  • Koch, G. G., Landis, J. R., Freeman, J. L., Freeman Jr., D. H., & Lehnen, R. G. (1977). A general methodology for the analysis of experiments with repeated measurement of categorical data. Biometrics, 33, 133–158.

    Article  MATH  Google Scholar 

  • Kraemer, H. C., Periyakoil, V. S., & Noda, A. (2002). Kappa coefficients in medical research. Statistics in Medicine, 21, 2109–2129.

    Article  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977a). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.

    Article  MATH  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977b). An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 33, 363–374.

    Article  MATH  Google Scholar 

  • Light, R. J. (1971). Measures of response agreement for qualitative data: some generalizations and alternatives. Psychological Bulletin, 76, 365–377.

    Article  Google Scholar 

  • Lipsitz, S. R., Laird, N. M., & Brennan, T. A. (1994). Simple moment estimates of the k-coefficient and its variance. Applied Statistics, 43, 309–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Maclure, M., & Willett, W. C. (1987). Misinterpretation and misuse of the kappa statistic. American Journal of Epidemiology, 126, 161–169.

    Article  Google Scholar 

  • Maxwell, A. E. (1977). Comparing the classification of subjects by two independent judges. British Journal of Psychiatry, 116, 651–655.

    Article  Google Scholar 

  • McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1, 30–46 (Correction to McGraw and Wong (1996). 1, 390.).

    Article  Google Scholar 

  • Mielke Jr., P. W., Berry, K. J., & Johnston, J. E. (2007). The exact variance of weighted kappa with multiple raters. Psychological Reports, 101, 655–660.

    Article  Google Scholar 

  • Ogasawara, H. (2010). Asymptotic expansions for the pivots using log-likelihood derivatives with an application in item response theory. Journal of Multivariate Analysis, 101, 2149–2167.

    Article  MathSciNet  MATH  Google Scholar 

  • Ogasawara, H. (2012). Cornish-Fisher expansions using sample cumulants and monotonic transformations. Journal of Multivariate Analysis, 103, 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Ogasawara, H. (2019). Supplement to the paper “Asymptotic cumulants of the minimum phi-divergence estimator for categorical data under possible model misspecification”. Economic Review (Otaru University of Commerce), 70 (2 & 3), 65–86. http://www.res.otaru-uc.ac.jp/~emt-hogasa/, http://hdl.handle.net/10252/00005952.

  • Ogasawara, H. (2020a). Asymptotic cumulants of the minimum phi-divergence estimator for categorical data under possible model misspecification. Communications in Statistics – Theory and Methods, 49, 2448–2465.

    Article  MathSciNet  Google Scholar 

  • Ogasawara, H. (2020b). Supplement to the paper “A unified treatment of agreement coefficients and their asymptotic results: the formula of the weighted mean of weighted ratios”. To appear in Economic Review (Otaru University of Commerce), 71 (2 & 3). http://www.res.otaru-uc.ac.jp/~emt-hogasa/, https://barrel.repo.nii.ac.jp/.

  • Scott, W. A. (1955). Reliability of content analysis: the case of nominal scale coding. The Public Opinion Quarterly, 19, 321–325.

    Article  Google Scholar 

  • Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater reliability. Psychological Bulletin, 86, 420–428.

    Article  Google Scholar 

  • Spitzer, R. L., Cohen, J., Fleiss, J. L., & Endicott, J. (1967). Quantification of agreement in psychiatric diagnosis: a new approach. Archives of General Psychiatry, 17, 83–87.

    Article  Google Scholar 

  • Stuart, A., & Ord, J. K. (1994). Kendall’s advanced theory of statistics: distribution theory (Vol. 1, 6th ed.). London: Arnold.

    Google Scholar 

  • Zhao, X., Liu, J. S., & Deng, K. (2013). Assumptions behind intercoder reliability indices. In C. T. Salmon (Ed.), Communication yearbook 36 (pp. 419–480). New York: Routledge.

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (JSPS KAKENHI, Grant No.17K00042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Ogasawara.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The need of unified treatment of the asymptotic results with transparency for agreement coefficients

Fleiss et al. (1979, p.974) started their paper with the statement “Many human endeavors have been cursed before final success is achieved. The scaling of Mount Everest is one example. The discovery of the Northwest Passage is a second. The derivation of a correct standard error for kappa is a third”. Note that “a correct standard error” refers to the ASE of Fleiss’ (1971) coefficient rather than that of the original kappa, whose correct ASE was given by Fleiss et al. (1969) as mentioned earlier. The statement has been quoted by, e.g. Kraemer, Periyakoil and Noda (2002, p.2109) and Berry et al. (2005, p.246).

The above statement suggests the necessity of unified treatment with transparency in the ASEs of the various agreement coefficients. All the ASEs available including that of the Gwet coefficient using linearlization can be seen as those based on the delta method or the Taylor series expansion of a sample coefficient up to the first derivatives. The derivatives for the ASEs are with respect to the sample proportions of the multinomial distribution with km cells evaluated at their population values.

While Gwet (2008a, Sections 6 and 7) showed some derivations or intermediate results for the ASEs, Fleiss et al. (1969) and Fleiss (1971) gave only the final expressions of the formulas of the ASEs. The author of the current paper has confirmed that their formulas with Fleiss et al. (1979) are correct ones. The principle of the delta method is quite simple and straightforward since only the first partial derivatives are required. Further, in the case of agreement coefficients, the situation is simpler than that of fitting non-saturated models, e.g. log-linear models (see, e.g. Agresti 2013), where the estimated parameters are generally implicit functions of the sample proportions. Though simple and straightforward, the derivation of the ASEs of the sample agreement coefficients tends to be tedious. Probably, this is one of the reasons of omitting the messy intermediate results in the above literatures yielding some lack of transparency.

To the author’s knowledge, no didactic or expository papers explaining the ASEs are available. It is ironical that the derivation of the ASE in the case of Everitt (1968) is more complicated than those in Fleiss et al. (1969) and Fleiss (1971) while the transparency is kept in that necessary intermediate results or whole derivation was given in Everitt (1968).

1.2 Some relationships among the six agreement coefficients

Lemma 1

When m = 2 and \( {w}_{i_1\;{i}_2}={\delta}_{i_1\;{i}_2}\;\left({i}_1,{i}_2=1,\dots, k\right) \), denote \( {p}_{\mathrm{o}}^{(w)} \) and \( {p}_{\mathrm{e}\;\left(\cdotp \right)}^{(w)} \) by \( {p}_{\mathrm{o}}^{\left(w=\delta \right)} \) and \( {p}_{\mathrm{e}\;\left(\cdotp \right)}^{\left(w=\delta \right)} \), respectively. Then, (i) for arbitrary k ≥ 2, using \( {\overline{p}}_i^2={\left({\overline{p}}_i\right)}^2 \)(see (2.4)) and \( \overline{p_i^2}\kern0.24em \left(i=1,\dots, k\right) \)(see (2.9)),

$$ {p}_{\mathrm{e}\left(\mathrm{S}\right)}^{\left(w=\delta \right)}=1-\left(k-1\right){p}_{\mathrm{e}\left(\mathrm{G}\right)}^{\left(w=\delta \right)}=\sum \limits_{i=1}^k{\overline{p}}_i^2\kern0.5em and\kern0.5em {p}_{\mathrm{e}\left(\mathrm{S}\mathrm{O}\right)}^{\left(w=\delta \right)}=1-\left(k-1\right){p}_{\mathrm{e}\left(\mathrm{G}\mathrm{O}\right)}^{\left(w=\delta \right)}=\sum \limits_{i=1}^k\overline{p_i^2}\cdotp $$
(A.1)

(ii) When k = 2, using \( \overline{p} \) defined after (2.7) with \( \overline{q}\equiv 1-\overline{p} \),

$$ {p}_{\mathrm{e}\;\left(\mathrm{S}\right)}^{\left(w=\delta \right)}=1-{p}_{\mathrm{e}\;\left(\mathrm{G}\right)}^{\left(w=\delta \right)}=1-2\overline{p}\;\overline{q}. $$
(A.2)

Proof. (i) The first set of equations of (A.1) is given by the definitions of (2.4) and (2.7) when \( {w}_{i_1\;{i}_2}={\delta}_{i_1\;{i}_2}\;\left({i}_1,{i}_2=1,\dots, k\right) \) with \( {\sum}_{i=1}^k{\overline{p}}_i=1 \). The second set of equations of (A.1) is similarly given by the definitions of (2.5) and (2.9). (ii) When k = 2, it follows that \( {p}_{\mathrm{e}\;\left(\mathrm{S}\right)}^{\left(w=\delta \right)}={\overline{p}}^2+{\left(1-\overline{p}\right)}^2={\overline{p}}^2+{\overline{q}}^2=1-2\overline{p}\;\overline{q}=1-{p}_{\mathrm{e}\;\left(\mathrm{G}\right)}^{\left(w=\delta \right)} \), where (2.8) is used with \( \overline{q}=1-\overline{p} \). Q.E.D.

Lemma 1 shows the compensatory linear relationships between \( {p}_{\mathrm{e}\;\left(\mathrm{S}\right)}^{\left(w=\delta \right)} \) and \( {p}_{\mathrm{e}\;\left(\mathrm{G}\right)}^{\left(w=\delta \right)} \), and between \( {p}_{\mathrm{e}\;\left(\mathrm{SO}\right)}^{\left(w=\delta \right)} \) and \( {p}_{\mathrm{e}\;\left(\mathrm{GO}\right)}^{\left(w=\delta \right)} \) for arbitrary k ≥ 2 when m = 2. Then, we have the following results.

Theorem 1.

When m = 2,

$$ {\displaystyle \begin{array}{cc}\left(\mathrm{i}\right)& {\hat{K}}_{(s)}={p}_{\mathrm{o}}^{\left(w=\delta \right)}\end{array}}-\frac{{\left(1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}\right)}^2}{p_{\mathrm{o}}^{\left(w=\delta \right)}-{\hat{K}}_{\left(\mathrm{G}\right)}}\le {\hat{K}}_{\left(\mathrm{G}\right)}\kern0.5em for\ k=2. $$
(A.3)
$$ \left(\mathrm{ii}\right)\kern0.5em {\hat{K}}_{(S)}=1-\frac{\left(1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}\right)\left(1-{\hat{K}}_{\left(\mathrm{G}\right)}\right)}{\left(k-1\right)\left({p}_{\mathrm{o}}^{\left(w=\delta \right)}-{\hat{K}}_{\left(\mathrm{G}\right)}\right)}\kern0.5em {\displaystyle \begin{array}{cc}\mathrm{and}& {\hat{K}}_{\left(\mathrm{SO}\right)}=1-\frac{\left(1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}\right)\left(1-{\hat{K}}_{\left(\mathrm{G}\mathrm{O}\right)}\right)}{\left(k-1\right)\left({p}_{\mathrm{o}}^{\left(w=\delta \right)}-{\hat{K}}_{\left(\mathrm{G}\mathrm{O}\right)}\right)}\end{array}} $$
(A.4)

for arbitrary k ≥ 2.

Proof. (i) The definition \( {\hat{K}}_{\left(\mathrm{S}\right)}=1-\frac{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}{1-{p}_{\mathrm{e}\left(\mathrm{S}\right)}^{\left(w=\delta \right)}} \) gives \( {p}_{\mathrm{e}\left(\mathrm{S}\right)}^{\left(w=\delta \right)}=1-\frac{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}{1-{\hat{K}}_{\left(\mathrm{S}\right)}} \) and similarly \( {\hat{K}}_{\left(\mathrm{G}\right)}=1-\frac{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}{1-{p}_{\mathrm{e}\left(\mathrm{G}\right)}^{\left(w=\delta \right)}} \) yields \( {p}_{\mathrm{e}\left(\mathrm{G}\right)}^{\left(w=\delta \right)}=1-\frac{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}{1-{\hat{K}}_{\left(\mathrm{G}\right)}} \). Using (A.2) in Lemma 1 and equating these results, we have: \( 1-\frac{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}{1-{\hat{K}}_{\left(\mathrm{S}\right)}}=\frac{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}{1-{\hat{K}}_{\left(\mathrm{G}\right)}}\leftrightarrow \frac{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}{1-{\hat{K}}_{\left(\mathrm{S}\right)}}=1-\frac{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}{1-{\hat{K}}_{\left(\mathrm{G}\right)}}=\frac{p_{\mathrm{o}}^{\left(w=\delta \right)}-{\hat{K}}_{\left(\mathrm{G}\right)}}{1-{\hat{K}}_{\left(\mathrm{G}\right)}}\leftrightarrow \frac{1-{\hat{K}}_{\left(\mathrm{S}\right)}}{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}=\frac{1-{\hat{K}}_{\left(\mathrm{G}\right)}}{p_{\mathrm{o}}^{\left(w=\delta \right)}-{\hat{K}}_{\left(\mathrm{G}\right)}}=1+\frac{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}{p_{\mathrm{o}}^{\left(w=\delta \right)}-{\hat{K}}_{\left(\mathrm{G}\right)}} \) giving the equation in (A.3). For the inequality, using (A.2) we have:

$$ {p}_{\mathrm{e}\;\left(\mathrm{S}\right)}^{\left(w=\delta \right)}-{p}_{\mathrm{e}\;\left(\mathrm{G}\right)}^{\left(w=\delta \right)}=1-4\overline{p}\;\overline{q}={\left(\overline{p}+\overline{q}\right)}^2-4\overline{p}\;\overline{q}={\left(\overline{p}-\overline{q}\right)}^2\ge 0. $$
(A.5)

Then, the definition \( {\hat{K}}_{\left(\cdotp \right)}=1-\frac{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}{1-{p}_{\mathrm{e}\left(\cdotp \right)}^{\left(w=\delta \right)}} \) and (A.5) give the inequality in (A.3) when \( 1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}>0 \). The equality in the inequality is obtained when \( {p}_{\mathrm{e}\;\left(\mathrm{S}\right)}^{\left(w=\delta \right)}={p}_{\mathrm{e}\;\left(\mathrm{G}\right)}^{\left(w=\delta \right)} \) and \( 1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}>0 \). When \( 1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}=0 \), the definitions of \( {\hat{K}}_{\left(\mathrm{S}\right)} \) and \( {\hat{K}}_{\left(\mathrm{G}\right)} \) give \( {\hat{K}}_{\left(\mathrm{S}\right)}={\hat{K}}_{\left(\mathrm{G}\right)} \), which also satisfies the equality in the inequality.

(ii) For the first equation of (A.4), the definition of \( {p}_{\mathrm{e}\;\left(\mathrm{G}\right)}^{(w)} \) gives:

\( {p}_{\mathrm{e}\left(\mathrm{G}\right)}^{\left(w=\delta \right)}=1-\frac{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}{1-{\hat{K}}_{\left(\mathrm{G}\right)}}=\frac{p_{\mathrm{o}}^{\left(w=\delta \right)}-{\hat{K}}_{\left(\mathrm{G}\right)}}{1-{\hat{K}}_{\left(\mathrm{G}\right)}} \). This equation and (A.1) give:

\( 1-{p}_{\mathrm{e}\left(\mathrm{S}\right)}^{\left(w=\delta \right)}=\left(k-1\right)\frac{p_{\mathrm{o}}^{\left(w=\delta \right)}-{\hat{K}}_{\left(\mathrm{G}\right)}}{1-{\hat{K}}_{\left(\mathrm{G}\right)}} \). Since \( 1-{p}_{\mathrm{e}\left(\mathrm{S}\right)}^{\left(w=\delta \right)}=\frac{1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}}{1-{\hat{K}}_{\left(\mathrm{S}\right)}} \), the last result yields \( 1-{\hat{K}}_{\left(\mathrm{S}\right)}=\frac{\left(1-{p}_{\mathrm{o}}^{\left(w=\delta \right)}\right)\left(1-{\hat{K}}_{\left(\mathrm{G}\right)}\right)}{\left(k-1\right)\left({p}_{\mathrm{o}}^{\left(w=\delta \right)}-{\hat{K}}_{\left(\mathrm{G}\right)}\right)} \). which gives the first equation of (A.4). The second equation of (A.4) is similarly obtained. Q.E.D.

Two additional inequalities are given.

Theorem 2.

When m = 2 and \( {w}_{i_1\;{i}_2}={\delta}_{i_1\;{i}_2}\;\left({i}_1,{i}_2=1,\dots, k\right) \),

$$ \left(\mathrm{i}\right){\hat{K}}_{\left(\mathrm{S}\right)}\ge {\hat{K}}_{\left(\mathrm{S}\mathrm{O}\right)} $$
(A.6)
$$ and\ \left(\mathrm{ii}\right)\ {\hat{K}}_{\left(\mathrm{G}\right)}\le {\hat{K}}_{\left(\mathrm{G}\mathrm{O}\right)}. $$
(A.7)

Proof. (i) Under the conditions of this theorem, \( {p}_{\mathrm{e}\;\left(\mathrm{S}\right)}^{(w)}={\sum}_{i=1}^k{\overline{p}}_i^2\le {\sum}_{i=1}^k\overline{p_i^2}= \) \( {p}_{\mathrm{e}\;\left(\mathrm{SO}\right)}^{(w)} \) since \( {\overline{p}}_i^2\le \overline{p_i^2}\;\left(i=1,\dots, k\right) \). Using the definitions of \( {\hat{K}}_{\left(\mathrm{S}\right)} \) and \( {\hat{K}}_{\left(\mathrm{SO}\right)} \) based on (2.1), (A.6) follows. (ii) As in (i) \( {p}_{\mathrm{e}\;\left(\mathrm{G}\right)}^{(w)}=\left(1-{\sum}_{i=1}^k{\overline{p}}_i^2\right)/\left(k-1\right)\ge \) \( \left(1-{\sum}_{i=1}^k\overline{p_i^2}\right)/\left(k-1\right)={p}_{\mathrm{e}\;\left(\mathrm{GO}\right)}^{(w)} \) follows. Then, (2.1) gives (A.7). Q.E.D.

1.3 The definitions of the chance-expected proportions for disagreement in the Gwet coefficient and its variation

In the cases of \( {\hat{K}}_{\left(\mathrm{G}\right)} \) and \( {\hat{K}}_{\left(\mathrm{GO}\right)} \), pairwise agreement is considered with \( {w}_{i_1\;{i}_2}={\delta}_{i_1\;{i}_2}\;\left({i}_1,{i}_2=1,\dots, k\right) \). So it is natural to use wii (=1)  (i = 1, …, k) rather than vii  = 1 − wii( = 0)  (i = 1, …, k). However, when vij = 1 − wij (i, j = 1, …, k) are used for \( {\hat{K}}_{\left(\mathrm{G}\right)} \), we require pe (G)  ij(i, j = 1, …, k), which are not defined by Gwet (2008a) except for \( {p}_{\mathrm{e}\;\left(\mathrm{G}\right)\kern0.24em ii}={\overline{p}}_i\left(1-{\overline{p}}_i\right)/\left(k-1\right)\kern0.24em \left(i=1,\dots, k\right) \). The undefined pe (G)  ij (i, j = 1, …, k; i ≠ j) are defined as follows. Using the complementary relationship between \( {p}_{\mathrm{e}\;\left(\cdotp \right)}^{(w)} \) and \( {p}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)} \) by construction:

$$ {\displaystyle \begin{array}{c}{p}_{\mathrm{e}\left(\mathrm{G}\right)}^{(v)}=1-{p}_{\mathrm{e}\left(\mathrm{G}\right)}^{(v)}=1-\frac{1}{k-1}\sum \limits_{i,j=1}^k{w}_{ij}\left({\overline{p}}_i-{\overline{p}}_i^2\right)=1-\frac{1}{k-1}\sum \limits_{i,j=1}^k{\delta}_{ij}\left({\overline{p}}_i-{\overline{p}}_i^2\right)\\ {}=1-\frac{1}{k-1}+\frac{1}{k-1}\sum \limits_{l=1}^k{\overline{p}}_l^2=\frac{1}{k-1}\left(k-2+\sum \limits_{l=1}^k{\overline{p}}_l^2\right)=\sum \limits_{\begin{array}{c}i,j=1\\ {}i\ne j\end{array}}^k\frac{1}{k{\left(k-1\right)}^2}\left(k-2+\sum \limits_{l=1}^k{\overline{p}}_l^2\right)\\ {}=\sum \limits_{l=1}^k\frac{1-{\delta}_{ij}}{k{\left(k-1\right)}^2}\left(k-2+\sum \limits_{l=1}^k{\overline{p}}_l^2\right)=\sum \limits_{i,j=1}^k{v}_{ij}\frac{k-2+{\sum}_{l=1}^k{\overline{p}}_l^2}{k{\left(k-1\right)}^2},\end{array}} $$

which gives:

$$ {p}_{\mathrm{e}\;\left(\mathrm{G}\right)\kern0.24em ij}=\frac{k-2+{\sum}_{l=1}^k{\overline{p}}_l^2}{k{\left(k-1\right)}^2}\kern0.24em \left(i,j=1,\dots, k;i\ne j\right) $$

in addition to \( {p}_{\mathrm{e}\;\left(\mathrm{G}\right)\kern0.24em ii}={\overline{p}}_i\left(1-{\overline{p}}_i\right)/\left(k-1\right)\kern0.24em \left(i=1,\dots, k\right) \). It is easily confirmed that \( {\sum}_{i,j=1}^k{p}_{\mathrm{e}\;\left(\mathrm{G}\right)\kern0.24em ij}=1 \). In the above additional definition, the same value is used for pe (G)  ij (i, j = 1, …, k; i ≠ j). Different values can also be used, if necessary, as long as 0 ≤ pe (G)  ij ≤ 1 (i, j = 1, …, k; i ≠ j) and \( {\sum}_{\begin{array}{l}i,j=1\\ {}i\ne j\end{array}}^k{p}_{\mathrm{e}\;\left(\mathrm{G}\right)\kern0.24em ij}= \) \( \left(k-2+{\sum}_{l=1}^k{\overline{p}}_l^2\right)/\left(k-1\right) \).

The above definition is introduced in the case of the unified treatment using vij (i, j = 1, …, k). However, for \( {\hat{K}}_{\left(\mathrm{G}\right)} \), the formulation using wij ( = δij ) (i = 1, …, k) may be more natural and simpler than using vij (i, j = 1, …, k). Note also that the additional definition is given from the complementary property \( {p}_{\mathrm{e}\;\left(\mathrm{G}\right)}^{(w)}+{p}_{\mathrm{e}\;\left(\mathrm{G}\right)}^{(v)}=1 \) without any theoretical basis using e.g., some random rating model as for pe (G)  ii  (i = 1, …, k).

Similarly, for \( {\hat{K}}_{\left(\mathrm{GO}\right)} \) using \( {p}_{\mathrm{e}\;\left(\mathrm{GO}\right)}^{(w)} \) in (2.9), the following definition is given:

$$ {p}_{\mathrm{e}\left(\mathrm{GO}\right) ij}=\frac{k-2+{\sum}_{l=1}^k\overline{p_i^2}}{k{\left(k-1\right)}^2}\left(i,j=1,\dots, k;\mathrm{i}\ne j\right) $$

in addition to \( {p}_{\mathrm{e}\left(\mathrm{GO}\right) ii}=\left({\overline{p}}_i-\overline{p_i^2}\right)/\left(k-1\right)\left(i=1,\dots, k\right) \).

1.4 Asymptotic results for \( {\hat{K}}_{\left(\cdotp \right)} \)

Define vec(·) as a vectorizing operator stacking the columns of a matrix sequentially with its first column on top.

Theorem 3.

Let \( {\kappa}_{(j)}^{\ast}\left(\cdotp \right) \) be the j-th cumulant of a variable. The (local) asymptotic cumulants up to the fourth order and the added higher-order asymptotic variance of order O(n−2) in \( {\kappa}_{(2)}^{\ast}\left(\cdotp \right) \) are given as follows:

$$ {\displaystyle \begin{array}{c}{\kappa}_1^{\ast}\left({\hat{K}}_{\left(\cdotp \right)}\right)=\mathrm{E}\left({\hat{K}}_{\left(\cdotp \right)}\right)={K}_{\left(\cdotp \right)}+\frac{n^{-1}}{2}\frac{\partial^2{K}_{\left(\cdotp \right)}}{{\left(\partial \boldsymbol{\pi} \prime \right)}^{<2>}}\mathrm{vec}\left(\boldsymbol{\Omega} \right)+O\left({n}^{-2}\right)\\ {}\equiv {K}_{\left(\cdotp \right)}+{n}^{-1}{\beta}_1+O\left({n}^{-2}\right),\end{array}} $$
(A.8)
$$ {\displaystyle \begin{array}{c}{\kappa}_2^{\ast}\left({\hat{K}}_{\left(\cdotp \right)}\right)=\mathrm{E}\left[{\left\{{\hat{K}}_{\left(\cdotp \right)}-\mathrm{E}\left({\hat{K}}_{\left(\cdotp \right)}\right)\right\}}^2\right]\\ {}={n}^{-1}{\left(\frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\pi} \prime}\right)}^{<2>}\mathrm{vec}\left(\boldsymbol{\Omega} \right)+{n}^{-2}\left[\frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\pi}^{\prime }}\otimes \frac{\partial^2{K}_{\left(\cdotp \right)}}{2{\left(\partial \boldsymbol{\pi} \prime \right)}^{<2>}}\mathrm{E}\left\{{\left(\mathbf{p}-\boldsymbol{\pi} \right)}^{<3>}\right\}\right.\\ {}\begin{array}{c}\left.+\frac{1}{2}\frac{\partial^2{K}_{\left(\cdotp \right)}}{{\left(\partial \boldsymbol{\pi} \prime \right)}^{<2>}}{\boldsymbol{\Omega}}^{<\mathbf{2}>}\frac{\partial^2{K}_{\left(\cdotp \right)}}{{\left(\partial \boldsymbol{\pi} \right)}^{<2>}}+\frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\pi}^{\prime }}\otimes \frac{\partial^3{K}_{\left(\cdotp \right)}}{{\left(\partial \boldsymbol{\pi} \prime \right)}^{<3>}}{\left\{\mathrm{vec}\left(\boldsymbol{\Omega} \right)\right\}}^{<2>}\right]+O\left({n}^{-3}\right)\\ {}\equiv {n}^{-1}{\beta}_2+{n}^{-2}{\beta}_{\Delta 2}+O\left({n}^{-3}\right),\\ {}\begin{array}{c}{\kappa}_3^{\ast}\left({\hat{K}}_{\left(\cdotp \right)}\right)=\mathrm{E}\left[{\left\{{\hat{K}}_{\left(\cdotp \right)}-\mathrm{E}\left({\hat{K}}_{\left(\cdotp \right)}\right)\right\}}^3\right]\\ {}={n}^{-2}\left\{{\left(\frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\pi} \prime}\right)}^{<3>}{n}^2{\boldsymbol{\kappa}}_3\left(\mathbf{p}\right)+3\frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\pi}^{\prime }}\boldsymbol{\Omega} \frac{\partial^2{K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\pi} \partial \boldsymbol{\pi}^{\prime }}\boldsymbol{\Omega} \frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\pi}}\right\}+O\left({n}^{-3}\right)\\ {}\equiv {n}^{-2}{\beta}_3+O\left({n}^{-3}\right),\end{array}\end{array}\end{array}} $$
$$ {\displaystyle \begin{array}{c}{\kappa}_4^{\ast}\left({\hat{K}}_{\left(\cdotp \right)}\right)=\mathrm{E}\left[{\left\{{\hat{K}}_{\left(\cdotp \right)}-\mathrm{E}\left({\hat{K}}_{\left(\cdotp \right)}\right)\right\}}^4\right]-3{\left\{\mathrm{E}\left[{\left\{{\hat{K}}_{\left(\cdotp \right)}-\mathrm{E}\left({\hat{K}}_{\left(\cdotp \right)}\right)\right\}}^2\right]\right\}}^2\\ {}\equiv {n}^{-3}\underset{\left(\mathrm{A}\right)}{\left[\begin{array}{c}\\ {}\end{array}\right.}{\left(\frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\uppi} \prime}\right)}^{<4>}{n}^3{\boldsymbol{\upkappa}}_4\left(\mathbf{p}\right)+2\frac{\partial^2{K}_{\left(\cdotp \right)}}{{\left(\partial \boldsymbol{\uppi} \prime \right)}^{<2>}}\otimes {\left(\frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\uppi} \prime}\right)}^{<3>}\sum \limits^{10}\mathrm{vec}\left(\boldsymbol{\Omega} \right)\otimes {n}^2{\boldsymbol{\upkappa}}_3\left(\mathbf{p}\right)\\ {}+\left[\frac{3}{2}{\left\{\frac{\partial^2{K}_{\left(\cdotp \right)}}{{\left(\partial \boldsymbol{\uppi} \prime \right)}^{<2>}}\right\}}^{<2>}+\frac{2}{3}\frac{\partial^3{K}_{\left(\cdotp \right)}}{{\left(\partial \boldsymbol{\uppi} \prime \right)}^{<3>}}\otimes \frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\uppi}^{\prime }}\right]\otimes {\left(\frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\uppi} \prime}\right)}^{<2>}\sum \limits^{15}{\left\{\mathrm{vec}\left(\boldsymbol{\Omega} \right)\right\}}^{<3>}\\ {}-\left(4{\beta}_1{\beta}_3+6{\beta}_2{\beta}_{\Delta 2}+6{\beta}_1^2{\beta}_2\right)\underset{\left(\mathrm{A}\right)}{\left.\begin{array}{c}\\ {}\end{array}\right]}+O\left({n}^{-4}\right)\\ {}\equiv {n}^{-3}{\beta}_4+O\left({n}^{-4}\right),\end{array}} $$

where \( \underset{\left(\mathrm{A}\right)}{\Big[}\cdotp \underset{\left(\mathrm{A}\right)}{\Big]} \) is for ease of finding correspondence; \( \overset{10}{\Sigma} \) is the sum of 10 similar terms considering combinations with \( \overset{15}{\Sigma} \) defined similarly; and κi(p) is the ki m × 1 vector of multivariate i-th cumulants of p (i = 3, 4), respectively.

Proof. The results are given from (4.1) using the definitions of cumulants, which are given by Ogasawara (2010, Section 2; 2020a, Theorem 1 with errata in 2019). Q.E.D.

Theorem 4.

The (local) asymptotic cumulants of t up to order O(n−1) are given by:

$$ {\displaystyle \begin{array}{c}{\kappa}_1^{\ast }(t)={n}^{-1/2}\left({\beta}_2^{-1/2}{\beta}_1-\frac{1}{2}{\beta}_2^{-3/2}\frac{\partial {\beta}_2}{\partial \boldsymbol{\uppi}^{\prime }}\boldsymbol{\Omega} \frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\uppi}}\right)+O\left({n}^{-3/2}\right)\\ {}\equiv {n}^{-1/2}{\beta}_1\hbox{'}+O\left({n}^{-3/2}\right),\\ {}\kern-11.6em {\kappa}_2^{\ast }(t)=1+O\left({n}^{-1}\right)\left({\beta}_2^{\prime }=1\right),\\ {}{\kappa}_3^{\ast }(t)={n}^{-1/2}\left({\beta}_2^{-3/2}{\beta}_3-3{\beta}_2^{-3/2}\frac{\partial {\beta}_2}{\partial \boldsymbol{\uppi}^{\prime }}\boldsymbol{\Omega} \frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\uppi}}\right)+O\left({n}^{-3/2}\right)\\ {}\equiv {n}^{-1/2}{\beta}_3\hbox{'}+O\left({n}^{-3/2}\right).\end{array}}. $$
(A.9)

Proof. See Ogasawara (2020a, Theorem 2). Q.E.D.

For the computation of the asymptotic cumulants in Theorems 3 and 4, the partial derivatives of \( {\hat{K}}_{\left(\cdotp \right)} \) with respect to p at π up to the third- and second-order are required, respectively. Let w and v be the km × 1 vectors corresponding to the weights \( {w}_{i_1\cdots {i}_m} \) and \( {v}_{i_1\cdots {i}_m}\left({i}_j=1,\dots, k;j=1,\dots, m\right) \), respectively. Then, we have \( {p}_{\mathrm{o}}^{(w)}=\mathbf{w}\hbox{'}\mathbf{p} \) and \( {p}_{\mathrm{o}}^{(v)}=\mathbf{v}\hbox{'}\mathbf{p} \), whose population counterparts are \( {\pi}_{\mathrm{o}}^{(w)}=\mathbf{w}\hbox{'}\boldsymbol{\uppi} \) and \( {\pi}_{\mathrm{o}}^{(v)}=\mathbf{v}\hbox{'}\boldsymbol{\uppi} \), respectively. Firstly, the partial derivatives for the single ratio version corresponding to \( {\hat{K}}_{\left(\cdotp \right)}^{\left(R\;m\;\left(2,\dots, m\right)\right)} \) in (3.7) are obtained.

Lemma 3.

The partial derivatives of \( {\hat{K}}_{\left(\cdotp \right)}^{\left(R\;m\;\left(2,\dots, m\right)\right)} \), synonymously denoted by \( {\hat{K}}_{\left(\cdotp \right)} \) for simplicity, with respect to p evaluated at π up to the third order are:

$$ {\displaystyle \begin{array}{c}\frac{\partial {K}_{\left(\cdotp \right)}}{\partial \boldsymbol{\uppi}}=\frac{\partial }{\partial \boldsymbol{\uppi}}\left(1-{\Delta}_{\left(\cdotp \right)}\right)=\frac{\partial }{\partial \boldsymbol{\uppi}}\left(1-\frac{\pi_{\mathrm{o}}^{(v)}}{\pi_{\mathrm{e}\left(\cdotp \right)}^{(v)}}\right)=-\frac{\mathbf{v}}{\pi_{\mathrm{e}\left(\cdotp \right)}^{(v)}}+\frac{\pi_{\mathrm{o}}^{(v)}}{{\left({\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}\right)}^2}\frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}},\\ {}\frac{\partial^2{K}_{\left(\cdotp \right)}}{{\left(\partial \boldsymbol{\uppi} \right)}^{<2>}}=\frac{1}{{\left({\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}\right)}^2}\left(\mathbf{v}\otimes \frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}+\frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}\otimes \mathbf{v}\right)-\frac{2{\pi}_{\mathrm{o}}^{(v)}}{{\left({\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}\right)}^3}{\left(\frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}\right)}^{<2>}\end{array}}+\frac{\pi_{\mathrm{o}}^{(v)}}{{\left({\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}\right)}^2}\frac{\partial^2{\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}}{{\left(\partial \boldsymbol{\uppi} \right)}^{<2>}}, $$
(A.10)
$$ \frac{\partial^3{K}_{\left(\cdotp \right)}}{{\left(\partial \boldsymbol{\uppi} \right)}^{<3>}}=-\frac{2}{{\left({\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}\right)}^3}\left\{\mathbf{v}\otimes {\left(\frac{\partial {\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}\right)}^{<2>}+\frac{\partial {\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}\otimes \mathbf{v}\otimes \frac{\partial {\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}+{\left(\frac{\partial {\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}\right)}^{<2>}\otimes \mathbf{v}\right\}+\frac{1}{{\left({\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}\right)}^2}\left\{\mathbf{v}\otimes \frac{\partial^2{\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{{\left(\partial \boldsymbol{\uppi} \right)}^{<2>}}+\frac{\partial^2{\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}\otimes \mathbf{v}\otimes \frac{1}{\partial \boldsymbol{\uppi}}+\frac{\partial^2{\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{{\left(\partial \boldsymbol{\uppi} \right)}^{<2>}}\otimes \mathbf{v}\right\}+\frac{6{\pi}_{\mathrm{o}}^{(v)}}{{\left({\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}\right)}^4}{\left(\frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}\right)}^{<3>}-\frac{2{\pi}_{\mathrm{o}}^{(v)}}{{\left({\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}\right)}^3}\left\{\frac{\partial^2{\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{{\left(\partial \boldsymbol{\uppi} \right)}^{<2>}}\otimes \frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}+\frac{\partial^2{\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}\otimes \frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}\otimes \frac{1}{\partial \boldsymbol{\uppi}}+\frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}\otimes \frac{\partial^2{\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{{\left(\partial \boldsymbol{\uppi} \right)}^{<2>}}\right\}+\frac{\pi_{\mathrm{o}}^{(v)}}{{\left({\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}\right)}^2}\frac{\partial^3{\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{{\left(\partial \boldsymbol{\uppi} \right)}^{<3>}}, $$

where:

$$ {\displaystyle \begin{array}{c}\frac{\partial^2{\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{{\left(\partial \boldsymbol{\uppi} \right)}_{i_1\cdots {i}_m}}\otimes {\left(\mathbf{v}\right)}_{j_1\cdots {j}_m}\otimes \frac{1}{{\left(\partial \boldsymbol{\uppi} \right)}_{k_1\cdots {k}_m}}=\frac{\partial^2{\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial {\pi}_{i_1\cdots {i}_m}}{v}_{j_1\cdots {j}_m}\frac{1}{\partial {\pi}_{k_1\cdots {k}_m}}\\ {}=\frac{\partial^2{\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial {\pi}_{i_1\cdots {i}_m}\partial {\pi}_{k_1\cdots {k}_m}}{v}_{j_1\cdots {j}_m}\left({i}_l,{j}_l,{k}_l=1,\dots, k,l=1,\dots, m\right)\end{array}} $$
(A.11)

using lexicographic or m-fold notations for the elements of vectors.

Proof. Direct derivation with \( \partial {\pi}_{\mathrm{o}}^{(v)}/\partial \boldsymbol{\uppi} =\mathbf{v} \) gives (A.10). Q.E.D.

Using Lemma 3, we have the partial derivative of the generic expression of the coefficient given by the general formula of the weighted mean of weighted ratios (see (3.10)) as follows.

Lemma 4.

Let \( {\hat{K}}_{\left(\cdotp \right)} \) be \( {\hat{K}}_{\left(\cdotp \right)}^{\left( Lm\;\left(2,\dots, m\right)\right)} \) in (3.10). Define \( {\hat{K}}_{\left(\cdotp \right)}^{\left(L\;m\;j\right)}=1-{\hat{\Delta}}_{\left(\cdotp \right)}^{\left(L\;m\;j\right)}\kern0.24em \left(j=2,\dots, m\right) \) (see (3.10)). Then, the partial derivatives of \( {\hat{K}}_{\left(\cdotp \right)} \) up to the third order with respect to p at π are given by:

$$ \frac{\partial^i{K}_{\left(\cdotp \right)}}{{\left(\partial \boldsymbol{\uppi} \right)}^{<i>}}=\sum \limits_{j=2}^m{W}^{\ast (j)}\frac{\partial^i{K}_{\left(\cdotp \right)}^{\left(L\;m\;j\right)}}{{\left(\partial \boldsymbol{\uppi} \right)}^{<i>}}\kern0.24em \left(i=1,\kern0.36em 2,\kern0.36em 3\right). $$
(A.12)

Proof. Using \( {\hat{K}}_{\left(\cdotp \right)}=1-\sum \limits_{j=2}^m{W}^{\ast (j)}{\hat{\Delta}}_{\left(\cdotp \right)}^{\left(L\;m\;j\right)}=\sum \limits_{j=2}^m{W}^{\ast (j)}{\hat{K}}_{\left(\cdotp \right)}^{\left(L\;m\;j\right)} \), we have (A.12). Q.E.D.

Among the asymptotic cumulants in Theorem 3, that of primary concern may be the asymptotic variance n−1β2 of \( {\hat{K}}_{\left(\cdotp \right)} \), which is given by (A.10) or (A.12).

Corollary 1.

The asymptotic variances of \( {\hat{K}}_{\left(\cdotp \right)} \)s in Lemmas 3 and 4 are given as follows:

$$ {\displaystyle \begin{array}{l}\begin{array}{l}n\mathrm{avar}\left({\hat{K}}_{\left(\cdotp \right)}^{\left( Rm\;\left(2,\dots, m\right)\right)}\right)=\frac{\partial {K}_{\left(\cdotp \right)}^{\left( Rm\;\left(2,\dots, m\right)\right)}}{\partial \boldsymbol{\pi}^{\prime }}n\;\mathrm{acov}\left\{\left({p}_{\mathrm{o}}^{(v)},{p}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}\right)^{\prime}\right\}\frac{\partial {K}_{\left(\cdotp \right)}^{\left( Rm\;\left(2,\dots, m\right)\right)}}{\partial \boldsymbol{\pi}}\\ {}=\frac{1}{{\left({\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}\right)}^4}\left({\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)},-{\pi}_{\mathrm{o}}^{(v)}\right)\left(\begin{array}{c}n \operatorname {var}\left(\mathbf{v}\hbox{'}\mathbf{p}\right)\kern1.32em n\;\mathrm{acov}\left\{\left(\mathbf{v}\hbox{'}\mathbf{p},{p}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}\right)\hbox{'}\right\}\\ {}n\;\mathrm{acov}\left\{\left({p}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)},\mathbf{v}\hbox{'}\mathbf{p}\right)\hbox{'}\right\}\kern0.48em n\;\mathrm{avar}\left({p}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}\right)\;\end{array}\right)\left(\begin{array}{c}{\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}\\ {}-{\pi}_{\mathrm{o}}^{(v)}\end{array}\right)\end{array}\\ {}=\frac{1}{{\left(1-{\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(w)}\right)}^4}\left\{1-{\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(w)},-\left(1-{\pi}_{\mathrm{o}}^{(w)}\right)\right\}\\ {}\times \left(\begin{array}{c}n \operatorname {var}\left(\mathbf{w}\hbox{'}\mathbf{p}\right)\kern1.32em n\;\mathrm{acov}\left(\mathbf{w}\hbox{'}\mathbf{p},{p}_{\mathrm{e}\;\left(\cdotp \right)}^{(w)}\right)\\ {}n\;\mathrm{acov}\left({p}_{\mathrm{e}\;\left(\cdotp \right)}^{(w)},\mathbf{w}\hbox{'}\mathbf{p}\right)\kern0.48em n\;\mathrm{avar}\left({p}_{\mathrm{e}\;\left(\cdotp \right)}^{(w)}\right)\;\end{array}\right)\left(\begin{array}{c}1-{\pi}_{\mathrm{e}\;\left(\cdotp \right)}^{(w)}\\ {}-\left(1-{\pi}_{\mathrm{o}}^{(w)}\right)\end{array}\right),\end{array}} $$
(A.13)

where:

$$ {\displaystyle \begin{array}{c}n\operatorname{var}\left(\mathbf{v}^{\prime}\mathbf{p}\right)=n\operatorname{var}\left(\mathbf{w}^{\prime}\mathbf{p}\right)=\mathbf{v}\hbox{'}\left\{\operatorname{diag}\left(\boldsymbol{\uppi} \right)-\boldsymbol{\uppi} \boldsymbol{\uppi}^{\prime}\right\}\mathbf{v}=\mathbf{v}\hbox{'}\operatorname{diag}\left(\boldsymbol{\uppi} \right)\mathbf{v}-{\left(\mathbf{v}\prime \boldsymbol{\uppi} \right)}^2,\\ {}n\mathrm{acov}\left(\mathbf{v}^{\prime}\mathbf{p},{p}_{\mathrm{e}\left(\cdotp \right)}^{(v)}\right)=n\mathrm{acov}\left(\mathbf{w}^{\prime}\mathbf{p},{p}_{\mathrm{e}\left(\cdotp \right)}^{(w)}\right)=\mathbf{v}\hbox{'}\operatorname{diag}\left(\boldsymbol{\uppi} \right)\frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}-\mathbf{v}\hbox{'}\boldsymbol{\uppi} \boldsymbol{\uppi} \hbox{'}\frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}},\\ {}n\mathrm{avar}\left({p}_{\mathrm{e}\left(\cdotp \right)}^{(v)}\right)=n\mathrm{avar}\left({p}_{\mathrm{e}\left(\cdotp \right)}^{(w)}\right)=\frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}^{\prime }}\operatorname{diag}\left(\boldsymbol{\uppi} \right)\frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}-{\left(\boldsymbol{\uppi} \prime \frac{\partial {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}{\partial \boldsymbol{\uppi}}\right)}^2\cdotp \end{array}} $$
(A.14)
$$ n\mathrm{avar}\left({\hat{K}}_{\left(\cdotp \right)}^{\left( Lm\;\left(2,\dots, m\right)\right)}\right)=\sum \limits_{i=2}^m{W}^{\ast (i)}\frac{\partial {K}_{\left(\cdotp \right)}^{\left( Lm\;i\right)}}{\partial \boldsymbol{\uppi} \hbox{'}}\boldsymbol{\Omega} \sum \limits_{j=2}^m{W}^{\ast (j)}\frac{\partial {K}_{\left(\cdotp \right)}^{\left( Lm\;j\right)}}{\partial \boldsymbol{\uppi}}\cdotp $$
(A.15)

Proof. Using the exact covariance matrix n cov(p) = diag(π) − ππ', (A.13) and (A.15) follow. The first equation of the three sets of equations of (A.14) are due to v ' p = 1 − w ' p and \( {p}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}=1-{p}_{\mathrm{e}\;\left(\cdotp \right)}^{(w)} \) (see Lemma 2). Q.E.D.

Theorem 5.

Denote two sets of mCm' values of \( {p}_{\mathrm{o}}^{\left(v,m\hbox{'}\right)}\left({r}_1,\dots, {r}_{m\hbox{'}}\right) \) and \( {p}_{\mathrm{e}\left(\cdotp \right)}^{\left(v,m\hbox{'}\right)}\left({r}_1,\dots, {r}_{m\hbox{'}}\right) \) in Definition 1 by \( {p}_{i\;\mathrm{o}}^{(v)} \) and \( {p}_{i\;\mathrm{e}\left(\cdotp \right)}^{(v)}\kern0.24em \left(i=1,\dots, G\right) \) with G =mCm'. Assume that the corresponding population values are the same over the G cases i.e., \( \mathrm{E}\left({p}_{i\;\mathrm{o}}^{(v)}\right)={\pi}_{i\;\mathrm{o}}^{(v)}\equiv {\pi}_{\mathrm{o}}^{(v)} \) and \( {\pi}_{i\;\mathrm{e}\left(\cdotp \right)}^{(v)}\equiv {\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}\kern0.24em \left(i=1,\dots, G\right) \). Then, \( \mathrm{avar}\left({\hat{K}}_{\left(\cdotp \right)}^{\left(R\;m\;m\hbox{'}\right)}\right)=\mathrm{avar}\left({\hat{K}}_{\left(\cdotp \right)}^{\left(M\;m\;m\hbox{'}\right)}\right) \).

Proof. Let \( {\boldsymbol{\uppi}}_{\mathrm{o}}^{(v)}=\left({\pi}_{1\;\mathrm{o}}^{(v)},\dots, {\pi}_{G\;\mathrm{o}}^{(v)}\right)\hbox{'} \) and \( {\boldsymbol{\uppi}}_{\mathrm{e}\;\left(\cdotp \right)}^{(v)}=\left({\pi}_{1\;\mathrm{e}\;\left(\cdotp \right)}^{(v)},\dots, {\pi}_{G\;\mathrm{e}\;\left(\cdotp \right)}^{(v)}\right)\hbox{'} \). Noting that:

$$ {\hat{K}}_{\left(\cdotp \right)}^{\left(R\;m\;m\hbox{'}\right)}=1-\frac{\sum_{i=1}^G{p}_{i\mathrm{o}}^{(v)}}{\sum_{i=1}^G{p}_{i\;\mathrm{e}\left(\cdotp \right)}^{(v)}}\kern1.1em \mathrm{and}\kern1.1em {\hat{K}}_{\left(\cdotp \right)}^{\left(M\;m\;m\hbox{'}\right)}=1-\frac{1}{G}\sum \limits_{i=1}^G\frac{p_{i\mathrm{o}}^{(v)}}{p_{i\;\mathrm{e}\left(\cdotp \right)}^{(v)}} $$
(A.16)

the following partial derivatives are obtained:

$$ \frac{\partial {K}_{\left(\cdotp \right)}^{\left( Rm m\prime \right)}}{\partial {\boldsymbol{\uppi}}_{\mathrm{o}}^{(v)}}=-\frac{{\mathbf{1}}_{(G)}}{\sum_{i=1}^G{\pi}_{i\mathrm{e}\left(\cdotp \right)}^{(v)}}=-\frac{{\mathbf{1}}_{(G)}}{G{\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}},\frac{\partial {K}_{\left(\cdotp \right)}^{\left( Rm{m}^{\prime}\right)}}{\partial {\boldsymbol{\uppi}}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}=\frac{\sum_{i=1}^G{\pi}_{i\mathrm{o}}^{(v)}{\mathbf{1}}_{(G)}}{{\left({\sum}_{i=1}^G{\pi}_{i\mathrm{e}\left(\cdotp \right)}^{(v)}\right)}^2}=\frac{\pi_{\mathrm{o}}^{(v)}{\mathbf{1}}_{(G)}}{G{\left({\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}\right)}^2}, $$
(A.16)
$$ {\displaystyle \begin{array}{c}\frac{\partial {K}_{\left(\cdotp \right)}^{\left( Mmm\prime \right)}}{\partial {\boldsymbol{\uppi}}_{\mathrm{o}}^{(v)}}=-\frac{1}{G}{\left(\frac{1}{\pi_{1\mathrm{e}\left(\cdotp \right)}^{(v)}},\dots, \frac{1}{\pi_{G\mathrm{e}\left(\cdotp \right)}^{(v)}}\right)}^{\prime }=-\frac{{\mathbf{1}}_{(G)}}{G{\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}},\\ {}\frac{\partial {K}_{\left(\cdotp \right)}^{\left( Mmm\prime \right)}}{\partial {\boldsymbol{\uppi}}_{\mathrm{e}\left(\cdotp \right)}^{(v)}}=\frac{1}{G}{\left\{\frac{\pi_{1\mathrm{o}}^{(v)}}{{\left({\pi}_{1\mathrm{e}\left(\cdotp \right)}^{(v)}\right)}^2},\dots, \frac{\pi_{G\mathrm{o}}^{(v)}}{{\left({\pi}_{G\mathrm{e}\left(\cdotp \right)}^{(v)}\right)}^2}\right\}}^{\prime }=\frac{\pi_{\mathrm{o}}^{(v)}{\mathbf{1}}_{(G)}}{G{\left({\pi}_{\mathrm{e}\left(\cdotp \right)}^{(v)}\right)}^2}\cdotp \end{array}} $$
(A.17)

Since the above partial derivatives are the same over \( {K}_{\left(\cdotp \right)}^{\left(R\;m\;m\hbox{'}\right)} \) and \( {K}_{\left(\cdotp \right)}^{\left(M\;m\;m\hbox{'}\right)} \), the required identity follows. Q.E.D.

The asymptotic variance of \( {\hat{K}}_{\left(\mathrm{C}\right)} \) when m ≥ 2 and its special case given by Fleiss et al. (1969) when m = 2.

In this subsection for \( {\hat{K}}_{\left(\mathrm{C}\right)} \) with m ≥ 2, we use w rather than v without loss of generality for comparison to the special case with m = 2 given by Fleiss et al. (1969). The asymptotic variance of \( {\hat{K}}_{\left(\mathrm{C}\right)} \) with m ≥ 2 is obtained from Corollary 1 and \( \boldsymbol{\uppi} \hbox{'}\partial {\pi}_{\mathrm{e}\;\left(\mathrm{C}\right)}^{(w)}/\partial \boldsymbol{\uppi} =m\;{\pi}_{\mathrm{e}\;\left(\mathrm{C}\right)}^{(w)} \) given by Ogasawara (2020b, Lemma S2):

$$ {\displaystyle \begin{array}{c}n\mathrm{avar}\left({\hat{K}}_{\left(\mathrm{C}\right)}\right)=\left(\frac{1}{1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}},-\frac{1-{\boldsymbol{\pi}}_{\mathrm{o}}^{(w)}}{{\left(1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2}\right)\left(\begin{array}{c}\mathbf{w}\hbox{'}\\ {}\partial {\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}/\partial \boldsymbol{\uppi} \hbox{'}\end{array}\right)\left\{\mathit{\operatorname{diag}}\left(\boldsymbol{\uppi} \right)-\boldsymbol{\uppi} \boldsymbol{\uppi}^{\prime}\right\}\\ {}\times \left(\mathbf{w},\partial {\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}/\partial \boldsymbol{\uppi} \right){\left(\frac{1}{1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}},-\frac{1-{\boldsymbol{\pi}}_{\mathrm{o}}^{(w)}}{{\left(1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2}\right)}^{\prime }=\left(\frac{1}{1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}},-\frac{1-{\pi}_{\mathrm{o}}^{(w)}}{{\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2}\right)\\ {}\times \left\{\left(\begin{array}{cc}\mathbf{w}^{\prime}\operatorname{diag}\left(\boldsymbol{\pi} \right)\mathbf{w}& \mathbf{w}\hbox{'}\operatorname{diag}\left(\boldsymbol{\pi} \right)\left(\partial {\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}/\partial \boldsymbol{\pi} \right)\\ {}\left(\partial {\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}/\partial {\boldsymbol{\pi}}^{\prime}\right)\operatorname{diag}\left(\boldsymbol{\pi} \right){\mathbf{w}}^{\prime }& \left(\partial {\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}/\partial \boldsymbol{\pi}^{\prime}\right) \operatorname {diag}\left(\boldsymbol{\pi} \right)\left(\partial {\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}/\partial \boldsymbol{\pi} \right)\end{array}\right)\right.\\ {}-\left(\begin{array}{c}\mathbf{w}\hbox{'}\boldsymbol{\pi} \\ {}\left(\partial {\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}/\partial \boldsymbol{\pi}^{\prime}\right)\boldsymbol{\pi} \end{array}\right)\left.\left(\mathbf{w}^{\prime}\boldsymbol{\pi}, \left(\partial {\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}/\partial \boldsymbol{\pi}^{\prime}\right)\boldsymbol{\pi} \right)\right\}{\left(\frac{1}{1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}},-\frac{1-{\pi}_{\mathrm{o}}^{(w)}}{{\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2}\right)}^{\prime}\\ {}=\frac{1}{{\left(1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2}\left\{\mathbf{w}^{\prime}\operatorname{diag}\left(\boldsymbol{\pi} \right)\mathbf{w}-{\left({\pi}_{\mathrm{o}}^{(w)}\right)}^2\right\}\\ {}-2\frac{1-{\boldsymbol{\pi}}_{\mathrm{o}}^{(w)}}{{\left(1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^3}\left\{\mathbf{w}^{\prime}\operatorname{diag}\left(\boldsymbol{\pi} \right)\frac{\partial {\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}{\partial \boldsymbol{\pi}}-m{\pi}_{\mathrm{o}}^{(w)}{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right\}\\ {}+\frac{{\left(1-{\boldsymbol{\pi}}_{\mathrm{o}}^{(w)}\right)}^2}{{\left(1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^4}\left\{\frac{\partial {\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}{\partial \boldsymbol{\pi}^{\prime }}\operatorname{diag}\left(\boldsymbol{\pi} \right)\frac{\partial {\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}{\partial \boldsymbol{\pi}}-{\left(m{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2\right\}\\ {}={\left\{\frac{\mathbf{w}}{1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}-\frac{\left(1-{\boldsymbol{\pi}}_{\mathrm{o}}^{(w)}\right)\left(\partial {\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}/\partial \boldsymbol{\pi} \right)}{{\left(1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2}\right\}}^{\prime}\operatorname{diag}\left(\boldsymbol{\pi} \right)\left\{\frac{\mathbf{w}}{1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}-\frac{\left(1-{\boldsymbol{\pi}}_{\mathrm{o}}^{(w)}\right)\left(\partial {\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}/\partial \boldsymbol{\pi} \right)}{{\left(1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2}\right\}\\ {}-\frac{1}{{\left(1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^4}{\left\{{\boldsymbol{\pi}}_{\mathrm{o}}^{(w)}\left(1-{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)-m\left(1-{\boldsymbol{\pi}}_{\mathrm{o}}^{(w)}\right){\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right\}}^2\\ {}=\frac{1}{{\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2}{\left\{\mathbf{w}-\left(1-{K}_{\left(\mathrm{C}\right)}\right)\frac{\partial {\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}{\partial \boldsymbol{\pi}}\right\}}^{\prime}\operatorname{diag}\left(\pi \right)\left\{\mathbf{w}-\left(1-{K}_{\left(\mathrm{C}\right)}\right)\frac{\partial {\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}{\partial \boldsymbol{\pi}}\right\}\\ {}-\frac{1}{\left(1-{{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}^4\right)}{\left\{\left(m-1\right){\boldsymbol{\pi}}_{\mathrm{o}}^{(w)}{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}-m{\boldsymbol{\pi}}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}+{\boldsymbol{\pi}}_{\mathrm{o}}^{(w)}\right\}}^2\cdotp \end{array}} $$
(A.18)

On the other hand, when m = 2, Fleiss et al. (1969, Equation (8)) gave:

$$ {\displaystyle \begin{array}{c}n\mathrm{avar}\left({\hat{K}}_{\left(\mathrm{C}\right)}\right)=\frac{1}{{\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^4}\left[\sum \limits_{i=1}^k\sum \limits_{j=1}^k{\pi}_{ij}{\left\{{w}_{ij}\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)-\left({\overline{w}}_{i\cdotp }+{\overline{w}}_{\cdotp j}\right)\left(1-{\pi}_{\mathrm{o}}^{(w)}\right)\right\}}^2\right.\\ {}\left.-{\left({\pi}_{\mathrm{o}}^{(w)}{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}-2{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}+{\pi}_{\mathrm{o}}^{(w)}\right)}^2\begin{array}{c}\\ {}\end{array}\right],\end{array}} $$

where their expressions of marginal weights are equal to the following ones using the notations of the current paper: \( {\overline{w}}_{i\cdotp }=\sum \limits_{j=1}^k{w}_{ij}{\pi}_{\cdotp j}=\sum \limits_{j=1}^k{w}_{ij}{\pi}_j^{(2)} \) and \( {\overline{w}}_{\cdotp j}=\sum \limits_{i=1}^k{w}_{ij}{\pi}_{i\cdotp }=\sum \limits_{i=1}^k{w}_{ij}{\pi}_i^{(1)} \).

In the above result, using \( {\overline{w}}_{i\cdotp }+{\overline{w}}_{\cdotp j}=\partial \sum \limits_{a,b=1}^k{w}_{ab}{\pi}_{a\cdotp }{\pi}_{\cdotp b}/\partial {\pi}_{ij}=\partial {\pi}_{\mathrm{e}\;\left(\mathrm{C}\right)}^{(w)}/\partial {\pi}_{ij} \), it is found that their summarized expression becomes:

$$ {\displaystyle \begin{array}{c}\frac{1}{{\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2}\sum \limits_{i=1}^k\sum \limits_{j=1}^k{\pi}_{ij}{w}_{ij}^2-2\frac{1-{\pi}_{\mathrm{o}}^{(w)}}{{\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^3}\sum \limits_{i=1}^k\sum \limits_{j=1}^k{\pi}_{ij}{w}_{ij}\frac{\partial {\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}{\partial {\pi}_{ij}}\\ {}+\frac{{\left(1-{\pi}_{\mathrm{o}}^{(w)}\right)}^2}{{\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^4}\sum \limits_{i=1}^k\sum \limits_{j=1}^k{\pi}_{ij}{\left(\frac{\partial {\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}{\partial {\pi}_{ij}}\right)}^2-\frac{{\left({\pi}_{\mathrm{o}}^{(w)}{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}-2{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}+{\pi}_{\mathrm{o}}^{(w)}\right)}^2}{{\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^4}\\ {}={\left\{\frac{\mathbf{w}}{1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}-\frac{\left(1-{\pi}_{\mathrm{o}}^{(w)}\right)\left(\partial {\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}/\partial \boldsymbol{\uppi} \right)}{{\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2}\right\}}^{\prime}\operatorname{diag}\left(\boldsymbol{\uppi} \right)\left\{\frac{\mathbf{w}}{1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}-\frac{\left(1-{\pi}_{\mathrm{o}}^{(w)}\right)\left(\partial {\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}/\partial \boldsymbol{\uppi} \right)}{{\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2}\right\}\\ {}-\frac{1}{{\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^4}{\left({\pi}_{\mathrm{o}}^{(w)}{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}-2{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}+{\pi}_{\mathrm{o}}^{(w)}\right)}^2\\ {}=\frac{1}{{\left(1-{\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}\right)}^2}{\left\{\mathbf{w}-\left(1-{K}_{\left(\mathrm{C}\right)}\right)\frac{\partial {\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}{\partial \boldsymbol{\uppi}}\right\}}^{\prime}\operatorname{diag}\left(\boldsymbol{\uppi} \right)\left\{\mathbf{w}-\left(1-{K}_{\left(\mathrm{C}\right)}\right)\frac{\partial {\pi}_{\mathrm{e}\left(\mathrm{C}\right)}^{(w)}}{\partial \boldsymbol{\uppi}}\right\}\\ {}-\frac{1}{{\left(1-{\pi}_{\mathrm{e}\;\left(\mathrm{C}\right)}^{(w)}\right)}^4}{\left({\pi}_{\mathrm{o}}^{(w)}{\pi}_{\mathrm{e}\;\left(\mathrm{C}\right)}^{(w)}-2{\pi}_{\mathrm{e}\;\left(\mathrm{C}\right)}^{(w)}+{\pi}_{\mathrm{o}}^{(w)}\right)}^2,\end{array}} $$

which is found to be equal to the last expression of (A.18) when m = 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogasawara, H. A Unified Treatment of Agreement Coefficients and their Asymptotic Results: the Formula of the Weighted Mean of Weighted Ratios. J Classif 38, 390–422 (2021). https://doi.org/10.1007/s00357-020-09366-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-020-09366-1

Keywords

Navigation