Skip to main content
Log in

Thermodynamically Consistent Filtration Model in a Double Porosity Medium with Scattered Fracture of a Matrix

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

A thermodynamically consistent model of a double porosity medium with scattered fracture of a matrix is developed. Fracture formation in the matrix is facilitated by the anomalously high reservoir pressure. It is assumed that that damage development in the matrix enhances mass transfer between the subsystems of a double porosity medium. By the example of the problem of productivity of a long cylindrical well, the influence of the abnormal high reservoir pressure on the fluid flow rate is qualitatively demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abousleiman, Y. and Nguyen, V., Poromechanics response of inclined wellbore geometry in fractured porous media, J. Eng. Mech., 2005, vol. 131, no. 11, pp. 1170–1183.

    Article  Google Scholar 

  2. Abousleiman, Y.N., Tran, M.H., Hoang, S., Bobko, C.P., Ortega, A., and Ulm, F.J., Geomechanics field and laboratory characterization of the Woodford Shale: The next gas play, Proc. SPE Annual Technical Conference and Exhibition, Anaheim, California, 2007, Richardson, Texas: Society of Petroleum Engineers, 2007, vol. IV, pp. 2127—2140.

  3. Bai, M., Roegiers, J.C., and Elsworth, D., Poromechanical response of fractured-porous rock masses, J. Pet. Sci. Eng., 1995, vol. 13, nos. 3–4, pp. 155–168.

    Article  Google Scholar 

  4. Barati, R. and Liang, J.T., A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells, J. Appl. Polym. Sci., 2014, vol. 131, no. 16, Paper ID 40735.

  5. Barenblatt, G.I., Zheltov, Y.P., and Kochina, I.N., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 1960, vol. 24, no. 5, pp. 852–864.

    Google Scholar 

  6. Berryman, J.G. and Pride, S.R., Models for computing geomechanical constants of double-porosity materials from the constituents’ properties, J. Geophys. Res.: Solid Earth, 2002, vol. 107, no. B3, pp. ECV 2-1 to ECV 2-14.

  7. Coussy, O., Poromechanics, Chichester: Wiley, 2004.

    Google Scholar 

  8. Craft, B.C. and Hawkins, M.F., Applied Reservoir Engineering, Englewood Cliffs: Prentice-Hall, 1959.

    Google Scholar 

  9. Engelder, T. and Lacazette, A., Natural hydraulic fracturing, in Rock Joints, Barton, N. and Stephansson, O., Eds., Rotterdam: Balkema, 1990, pp. 35–44.

    Google Scholar 

  10. Eseme, E., Urai, J.L., Krooss, B.M., and Littke, R., Review of mechanical properties of oil shales: implications for exploitation and basin modeling, Oil Shale, 2007, vol. 24, no. 2, pp. 159–174.

    Google Scholar 

  11. Fertl, W.H., Chilingarian, G.V., and Rieke, H.H., Abnormal Formation Pressures, Amsterdam: Elsevier, 1976.

    Google Scholar 

  12. Grytsenko, T. and Galybin, A.N., Numerical analysis of multi-crack large-scale plane problems with adaptive cross approximation and hierarchical matrices, Eng. Anal.Boundary Elem., 2010, vol. 34, no. 5, pp. 501–510.

    Article  Google Scholar 

  13. Izvekov, O.Ya. and Kondaurov, V.I., Model of a porous medium with an elastic fractured skeleton, Izv. Phys. Solid Earth, 2009, vol. 45, no. 4, pp. 301–312.

    Article  Google Scholar 

  14. Izvekov, O.Ya. and Kondaurov, V.I., Scattered fracture of porous materials with brittle skeleton, Mech. Solids, 2010, vol. 45, no. 3, pp. 445–464.

    Article  Google Scholar 

  15. Kocharyan, G.G., Geomekhanika razlomov (Geomechanics of Faults), Moscow: GEOS, 2016.

  16. Kondaurov, V.I., Mekhanika i termodinamika nasyshchennoi poristoi sredy (Mechanics and Thermodynamics of a Saturated Porous Medium), Moscow: MFTI, 2007.

  17. Kondaurov, V.I. and Izvekov, O.Ya., A model of saturated porous media with elastic brittle skeleton, Proc. 4th Biot Conference on Poromechanics: POROMECHANICS IV, Ling, H.I., Smythe, A., and Betti, R., Eds., New York, 2009, Pennsylvania: DEStech Publications, 2009, pp. 314–320.

  18. Lemaitre, J., A Course on Damage Mechanics, Berlin: Springer-Verlag, 1996.

    Book  Google Scholar 

  19. Li, S., George, J., and Prudy, C., Pore-pressure and wellbore-stability prediction to increase drilling efficiency, J. Pet. Technol., 2012, vol. 64, no. 02, pp. 98–101.

    Article  Google Scholar 

  20. Luo, X. and Vasseur, G., Natural hydraulic cracking: numerical model and sensitivity study, Earth Planet. Sci. Lett., 2002, vol. 201, no. 2, pp. 431–446.

    Article  Google Scholar 

  21. Magara, K., Compaction and Fluid Migration, Amsterdam: Elsevier, 1978.

    Google Scholar 

  22. Mehrabian, A. and Abousleiman, Y.N., Gassmann equations and the constitutive relations for multiple-porosity and multiple-permeability poroelasticity with applications to oil and gas shale, Int. J. Numer. Anal. Methods Geomech., 2015, vol. 39, no. 14, pp. 1547–1569.

    Article  Google Scholar 

  23. Melik-Pashaev, V.S., Khalimov, E.M., and Seregina, V.N., Anomal’no vysokie plastovye davleniya na neftyanykh i gazovykh mestorozhdeniyakh (Anomalous High Reservoir Pressures in Oil and Gas Fields), Moscow: Nedra, 1983.

  24. Mukhamediev, Sh.A., Methods for local recovery of tectonic stresses based on kinematic data: physical inconsistency and false objectives, Part I, Izv.Phys. Solid Earth, 2018, vol. 54, no. 6, pp. 807–837.

    Article  Google Scholar 

  25. Murakami, S., Continuum Damage Mechanics, Dordrecht: Springer, 2012.

    Book  Google Scholar 

  26. Olson, J.E., Predicting fracture swarms–the influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock, Geol. Soc., London, Spec. Publ., 2004, vol. 231, no. 1, pp. 73–88.

    Article  Google Scholar 

  27. Secor, D.T., Jr., Role of fluid pressure in jointing, Am. J. Sci., 1965, vol. 263, no. 8, pp. 633–646.

    Article  Google Scholar 

  28. Snow, D.T., Rock fracture spacings, openings, and porosities, J. Soil Mech. Found. Div., 1968, vol. 94, no. 1, pp. 73–92.

    Google Scholar 

  29. Sonnenberg, S.A. and Pramudito, A., Petroleum geology of the giant Elm Coulee field, Williston Basin, AAPG Bull., 2009, vol. 93, no. 9, pp. 1127–1153.

    Article  Google Scholar 

  30. Thompson, J.M., Nobakht, M., and Anderson, D.M., Modeling well performance data from overpressured shale gas reservoirs, Proc. Canadian Unconventional Resources and International Petroleum Conference, Calgary, 2010, Richardson, Texas: Society of Petroleum Engineers, 2010, Paper ID SPE-137755-MS.

  31. Tingay, M.R., Morley, C.K., Laird, A., Limpornpipat, O., Krisadasima, K., Pabchanda, S., and Macintyre, H.R., Evidence for overpressure generation by kerogen-to-gas maturation in the northern Malay Basin, AAPG Bull., 2013, vol. 97, no. 4, pp. 639–672.

    Article  Google Scholar 

  32. Truesdell, C.: A First Course in Rational Continuum Mechanics, Baltimore: The Johns Hopkins Univ., 1972. van Golf-Racht, T.D. Fundamentals of Fractured Reservoir Engineering, Amsterdam: Elsevier, 1982.

  33. Warpinski, N.R., Mayerhofer, M.J., Vincent, M.C., Cipolla, C.L., and Lolon, E.P., Stimulating unconventional reservoirs: maximizing network growth while optimizing fracture conductivity, J. Can. Pet. Technol., 2009, vol. 48, no. 10, pp. 39–51.

    Article  Google Scholar 

  34. Wu, Y.S., Li, J., Ding, D., Wang, C., and Di, Y., A generalized framework model for the simulation of gas production in unconventional gas reservoirs, SPE J., 2014, vol. 19, no. 5, pp. 845–857.

    Article  Google Scholar 

  35. Ye, Z., Ghassemi, A., and Riley, S., Fracture properties characterization of shale rocks, Proc. SPE/SEG/AAPG/ Unconventional Resources Technology Conference, San Antonio, Texas, 2016, Richardson, Texas: Society of Petroleum Engineers, 2016, vol. II, pp. 1144–1156.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ya. Izvekov.

Ethics declarations

The study is supported by the Russian Foundation for Basic Research: grant no. 19-01-00592.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izvekov, O.Y., Konyukhov, A.V. & Cheprasov, I.A. Thermodynamically Consistent Filtration Model in a Double Porosity Medium with Scattered Fracture of a Matrix. Izv., Phys. Solid Earth 56, 695–707 (2020). https://doi.org/10.1134/S1069351320050043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320050043

Keywords:

Navigation