Skip to main content
Log in

Morphology and viscoelastic properties of UV cured-polyurethane acrylate/silicon carbide nanocomposites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The viscoelastic properties of semi-conductive UV cured urethane acrylate/silicon carbide nanocomposites (UV-PUA/SiC) containing 0.1, 0.3, 0.6, 1, 3, and 5% (wt) of SiC are studied. Scanning electron microscopy (SEM) was employed to examine the state of the spatial distribution of SiC particles in the matrix. In conjunction with the electron microscopy technique, dynamic mechanical thermal analysis (DMTA) was employed as an indirect tool for the microstructure characterization and evaluation of the network heterogeneity and cross-link density of the nanocomposites. The influence of SiC nanoparticles on the storage modulus, loss modulus, cross-link density, glass transition temperature, and activation energy for glass transition of the UV-PUA matrix are investigated. The effect of SiC content on the network structures and degree of curing of the nanocomposites was evaluated by William-Landel-Ferry (WLF) constants. The breadth of the glass transition in the tanδ curve and shape parameter (β) in the Kolrausch-Williams-Watts (KWW) equation were used to investigate the network heterogeneity of the samples. All these referred parameters increased with SiC nanoparticles loading up to 0.6% (wt). In contrast, upon introducing SiC at higher concentrations, the viscoelastic properties of the nanocomposites reduced significantly. SEM analysis was used to evaluate the DMTA results regarding the dispersion state of the nanoparticles in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhattacharya SN, Kamal MR, Gupta RK (2008) Polymeric nanocomposites: theory and practice, Carl Hanser

  2. Ghanbari A, Prud'homme RE (2017) Lamellar and spherulitic crystallization of poly(s-2-hydroxybutanoic acid) and its stereocomplexes. Polymer 112:377–384

    Article  CAS  Google Scholar 

  3. Xu XF, Ghanbari A, Leelapornpisit W, Heuzey MC, Carreau P (2011) Effect of ionomer on barrier and mechanical properties of PET/organoclay nanocomposites prepared by melt compounding. Int Polym Proc 26:444–455

    Article  CAS  Google Scholar 

  4. Ghanbari A, Behzadfar E, Arjmand M (2019) Properties of talc filled reactor-made thermoplastic polyolefin composites. J Polym Res 26:241

    Article  CAS  Google Scholar 

  5. Ghanbari A, Heuzey M-C, Carreau PJ, Ton-That M-T (2013) Morphology and properties of polymer/organoclay nanocomposites based on poly(ethylene terephthalate) and sulfopolyester blends. Polym Int 62:439–448

    Article  CAS  Google Scholar 

  6. Li JH, Hong RY, Li MY, Li HZ, Zheng Y, Ding J (2009) Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog Org Coat 64:504–509

    Article  CAS  Google Scholar 

  7. Chisholm N, Mahfuz H, Rangari V, Adnan A, Jeelani S (2005) Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites. Compos Struct 67:115–124

    Article  Google Scholar 

  8. Wang K, Chen L, Wu J, Toh ML, He C, Yee AF (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38:788–800

    Article  CAS  Google Scholar 

  9. Martin JS, Laza JM, Morrás ML, Rodrı́guez M, León LM (2000) Study of the curing process of a vinyl ester resin by means of TSR and DMTA. Polymer 41:4203–4211

    Article  CAS  Google Scholar 

  10. Gojny FH, Schulte K (2004) Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Compos Sci Technol 64:2303–2308

    Article  CAS  Google Scholar 

  11. Montazeri A, Montazeri N (2011) Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content. Mater Design 32:2301–2307

    Article  CAS  Google Scholar 

  12. Ghanbari A, Heuzey M-C, Carreau PJ, Ton-That M-T (2013) Morphological and rheological properties of PET/clay nanocomposites. Rheol Acta 52:59–74

    Article  CAS  Google Scholar 

  13. Shibayama K, Suzuki Y (1965) Effect of crosslinking density on the viscoelastic properties of unsaturated polyesters. J Polym Sci Part A: General Papers 3:2637–2651

    CAS  Google Scholar 

  14. Tcharkhtchi A, Lucas AS, Trotignon JP, Verdu J (1998) Viscoelastic properties of epoxy networks in the glass transition region. Polymer 39:1233–1235

    Article  CAS  Google Scholar 

  15. Cook WD, Forsythe JS, Irawati N, Scott TF, Xia WZ (2003) Cure kinetics and thermomechanical properties of thermally stable photopolymerized dimethacrylates. J Appl Polym Sci 90:3753–3766

    Article  CAS  Google Scholar 

  16. Cook WD, Scott TF, Quay-Thevenon S, Forsythe JS (2004) Dynamic mechanical thermal analysis of thermally stable and thermally reactive network polymers. J Appl Polym Sci 93:1348–1359

    Article  CAS  Google Scholar 

  17. Kannurpatti AR, Anderson KJ, Anseth JW, Bowman CN (1997) Use of “living” radical polymerizations to study the structural evolution and properties of highly crosslinked polymer networks. J Polym Sci Part B: Polym Phys 35:2297–2307

    Article  CAS  Google Scholar 

  18. Zabihi O, Khodabandeh A, Mostafavi SM (2012) Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposite containing polythiophene nanoparticles using dynamic thermal analysis. Polym Degrad Stabil 97:3–13

    Article  CAS  Google Scholar 

  19. Mishra RS, Mishra AK, Raju KVSN (2009) Synthesis and property study of UV-curable hyperbranched polyurethane acrylate/ZnO hybrid coatings. Eur Polym J 45:960–966

    Article  CAS  Google Scholar 

  20. Yuan Y, Shi W (2010) Preparation and properties of exfoliated nanocomposites through intercalated a photoinitiator into LDH interlayer used for UV curing coatings. Prog Org Coat 69:92–99

    Article  CAS  Google Scholar 

  21. Scott TF, Cook WD, Forsythe JS (2008) Effect of the degree of cure on the viscoelastic properties of vinyl ester resins. Eur Polym J 44:3200–3212

    Article  CAS  Google Scholar 

  22. Menard K (1999) Dynamic mechanical analysis. vol 9. United State of America

  23. Jeziórska R, Sewierz-Motysia B, Szadkowska A, Marciniec B, Maciejewski H, Dutkiewicz M, Leszczyńska I (2011) Effect of POSS on morphology, thermal and mechanical properties of polyamide 6. Polimery 56:809–816

    Article  Google Scholar 

  24. Jones DS, Tian Y, Abu-Diak O, Andrews GP (2012) Pharmaceutical applications of dynamic mechanical thermal analysis. Adv Drug Deliv Rev 64:440–448

    Article  CAS  Google Scholar 

  25. Montazeri A, Khavandi A, Javadpour J, Tcharkhtchi A (2010) The effect of curing cycle on the mechanical properties of MWNT/epoxy nanocomposite. Int J Polym Anal Charact 15:182–190

    Article  CAS  Google Scholar 

  26. Seyhan AT, Gojny FH, Tanoğlu M, Schulte K (2007) Rheological and dynamic-mechanical behavior of carbon nanotube/vinyl ester–polyester suspensions and their nanocomposites. Eur Polym J 43:2836–2847

    Article  CAS  Google Scholar 

  27. O’Brien DJ, Sottos NR, White SR (2007) Cure-dependent viscoelastic Poisson’s ratio of epoxy. Exp Mech 47:237–249

    Article  Google Scholar 

  28. Williams M, Landel R, Ferry J (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707

    Article  CAS  Google Scholar 

  29. Kannurpatti AR, Anseth JW, Bowman CN (1998) A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates. Polymer 39:2507–2513

    Article  CAS  Google Scholar 

  30. Zamani Ketek Lahijania Y, Mohseni M, Bastani S (2014) Characterization of mechanical behavior of UV cured urethane acrylate nanocomposite films loaded with silane treated nanosilica by the aid of nanoindentation and nanoscratch experiments. Tribol Int 69:10–18

    Article  CAS  Google Scholar 

  31. Wang X, Xing W, Song L, Yu B, Hu Y, Yeoh GH (2013) Preparation of UV-curable functionalized graphene/polyurethane acrylate nanocomposite with enhanced thermal and mechanical behaviors. React Funct Polym 73:854–858

    Article  CAS  Google Scholar 

  32. Madhi A, Shirkavand Hadavand B (2020) Bio-based UV-curable urethane acrylate graphene nanocomposites: synthesis and properties. SN Appl Sci 2:724

    Article  CAS  Google Scholar 

  33. Uhl FM, Davuluri SP, Wong S-C, Webster DC (2004) Organically modified montmorillonites in UV curable urethane acrylate films. Polymer 45:6175–6187

    Article  CAS  Google Scholar 

  34. Hadavand BS, Najafi F, Saeb MR, Malekian A (2017) Hyperbranched polyesters urethane acrylate resin: a study on synthesis parameters and viscoelastic properties. High Perform Polym 29:651–662

    Article  CAS  Google Scholar 

  35. Shirkavand Hadavand B, Hosseini H (2016) Investigation of viscoelastic properties and thermal behavior of photocurable epoxy acrylate nanocomposites. Sci Eng Compos Mater 24

  36. Najafi F, Shirkavand Hadavand B, Pournamdar A (2017) Trimethoxysilane-assisted UV-curable urethane acrylate as clear coating: from synthesis to properties. Colloid Polym Sci 295:1717–1728

    Article  CAS  Google Scholar 

  37. Madhi A, Shirkavand Hadavand B, Amoozadeh A (2018) UV-curable urethane acrylate zirconium oxide nanocomposites: synthesis, study on viscoelastic properties and thermal behavior. J Compos Mater 52:002199831875617

    Article  Google Scholar 

  38. Cheng X-E, Liu S, Shi W (2009) Synthesis and properties of silsesquioxane-based hybrid urethane acrylate applied to UV-curable flame-retardant coatings. Prog Org Coat 65:1–9

    Article  CAS  Google Scholar 

  39. Montazeri A, Khavandi A, Javadpour J, Tcharkhtchi A (2010) Viscoelastic properties of multi-walled carbon nanotube/epoxy composites using two different curing cycles. Mater Des 31:3383–3388

    Article  CAS  Google Scholar 

  40. Phewphong P, Saeoui P, Sirisinha C (2008) The use of dynamic mechanical thermal analysis technique for determining an uneven distribution of precipitated silica in CPE/NR blends. Polym Test 27:873–880

    Article  CAS  Google Scholar 

  41. Pourhossaini M-R, Razzaghi-Kashani M (2014) Effect of silica particle size on chain dynamics and frictional properties of styrene butadiene rubber nano and micro composites. Polymer 55:2279–2284

    Article  CAS  Google Scholar 

  42. Montazeri A, Pourshamsian K, Riazian M (2012) Viscoelastic properties and determination of free volume fraction of multi-walled carbon nanotube/epoxy composite using dynamic mechanical thermal analysis. Mater Des 36:408–414

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the assistance of the Institute for Color Science and Technology for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malihe Pishvaei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13726_2020_871_MOESM1_ESM.doc

\(\mathrm{ln}f\) versus \(\frac{1000}{{T_{g} }}\) for nanocomposites containing a 0, b 0.6, c 1, and d 3% (wt) SiC (DOC 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, D., Shirkavand Hadavand, B. & Pishvaei, M. Morphology and viscoelastic properties of UV cured-polyurethane acrylate/silicon carbide nanocomposites. Iran Polym J 30, 35–45 (2021). https://doi.org/10.1007/s13726-020-00871-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00871-z

Keywords

Navigation