Skip to main content
Log in

Periodic Solutions of the N-Preys and M-Predators Model with Variable Rates on Time Scales

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we establish the existence of periodic solution of a delayed predator-prey model with M -predators and N -preys over the time scales. We derive sufficient conditions for the existence of a periodic solution with the help of continuation theorem of coincidence degree theory. At the end, we give an example with numerical simulations to illustrate our analytical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. P. Agarwal, Difference equations and inequalities: Theory, method and applications monographs and textbooks in pure and applied mathematics, New York: Springer, 228 (2000).

    Book  Google Scholar 

  2. S. Alam, S. Abbas, and J. J. Nieto, Periodic solutions of a non-autonomous Leslie-gower predator-prey model with non-linear type prey harvesting on time scales, Differ. Equ. Dyn. Syst., (2015), 1–11.

  3. L. Ai-lian, Boundedness and exponential stability of solution to dynamic equations on time scales, Electron. J. Differential Equations, 2006(12) (2006), 1–14.

    Google Scholar 

  4. F. M. Atici, D. C. Biles, and A. Lebedinsky, An application of time scales to economics, Math. Comput. Model., 43(7) (2006), 718–726.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bohner and A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhauser, Boston, MA (2001).

    Book  MATH  Google Scholar 

  6. M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkhäuser, Boston, (2003).

    Book  MATH  Google Scholar 

  7. M. Bohner and A. Peterson, Dynamic equations on time scales: An introduction with applications, Springer Science and Business Media, (2012).

  8. M. Bohner, M. Fan, and J. Zhang, Existence of periodic solutions in predator prey and competition dynamic systems, Nonlinear Anal. RWA., 7(5) (2006), 1193–1204.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Chen, Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems, Appl. Math. Comput., 182(1) (2006), 3–12.

    MathSciNet  MATH  Google Scholar 

  10. F. B. Christiansen and T. M. Fenchel, Theories of populations in biological communities, Lecture Notes in Ecological Studies, Springer-Verlag, Berlin, 20 (1977), 1–36.

    MATH  Google Scholar 

  11. M. Fan and K. Wang, Periodicity in a delayed ratio-dependent predator-prey system, J. Math. Anal. Appl., 262 (2001), 179–190

    Article  MathSciNet  MATH  Google Scholar 

  12. H. I. Freedman, Deterministic mathematical models in population, New York, Ecology, (1980).

  13. R. E. Gaines and J. L. Mawhin, Coincidence degree and nonlinear differential equations, Springer, Berlin, Germany, Springer-Verlag, Pergamon Press, 568 (1977).

    Book  MATH  Google Scholar 

  14. S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18(1) (1990), 18–56.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Ji, D. Jiang, and N. Shi, Analysis of a predator prey model with modified Leslie-Gower and Hollingtype II schemes with stochastic perturbation, J. Math. Anal. Appl., 359(2) (2009), 482–498.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Keller, Asymptotisches Verhalten invarianter Faserbndel bei Diskretisierung und Mittelwertbildung im Rahmen der Analysis auf Zeitskalin, PhD thesis, Universität Augsburg, (1999).

  17. Y. Li, Periodic solutions of a periodic delay predator-prey system, Proc. Amer. Math. Soc., 127(5) (1999), 1331–1335.

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Ma and W. Wendi, Asymptotic behavior of predator-prey system with time dependent coefficients, Appl. Anal., 34 (1989), 79–90.

    Article  MATH  Google Scholar 

  19. A. Sirma and S. Sevgin, A note on coincidence degree theory, Hindawi Publishing Corporation, Abstr. Appl. Anal., 2012 (2012), Article ID 370946 18.

  20. D. Wang, Multiple positive periodic solutions for an n-species competition predator-prey system on time scales, J. Appl. Math. Comput., 42(1) (2013), 259–281.

    Article  MathSciNet  MATH  Google Scholar 

  21. X. Z. Wen, Global attractivity of a positive periodic solution of a multispecies ecological competition predator delay system, Acta Math. Sinica., 45(1) (2002), 83–92.

    MathSciNet  MATH  Google Scholar 

  22. Y. H. Xia, X. Gu, P. J. Y. Wong, and S. Abbas, Application of Mawhin’s coincidence degree and matrix spectral theory to a delayed system, Abstr. Appl. Anal., 2012 (2012), Article ID 940287 19.

  23. P. Yang and X. Rui, Global attractivity of the periodic Lotka-Volterra system, J. Math. Anal. Appl., 233(1) (1999), 221–232.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Yange, Y. Xiaojie, and H. Yong, Periodic solutions to a predator-prey system on time scales with Beddington-DeAngelis functional response and diffusion, (Chinese) J. South China NormalUniv. Natur. Sci. Ed., (2010), 19–26.

  25. B. B. Zhang and M. Fan, A remark on the application of coincidence degree to periodicity of dynamic equations on time scales, J. Northeast Normal Univ., 39 (2007), 1–3.

    MathSciNet  MATH  Google Scholar 

  26. R. Y. Zhang, Z. C. Wang, Y. Chen, and J. Wu, Periodic solutions of a single species discrete population model with periodic harvest/stock, Comput. Math. Appl., 39(1–2) (2000), 77–90.

    Article  MathSciNet  MATH  Google Scholar 

  27. Z. Zhang and Z. Hou, Existence of four positive periodic solutions for a ratio-dependent predatorprey system with multiple exploited or harvesting terms, Nonlinear Anal. RWA., 11(3) (2010), 1560–1571.

    Article  MATH  Google Scholar 

  28. L. Zhonghua and C. Lansun, Global asymptotic stability of the periodic Lotka–Volterra system with two-predator and one-prey, Appl. Math. J. Chinese Univ. Ser. B., 10(3) (1995), 267–274.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the referee’s careful reviewing and helpful comments and suggestions. This research has been supported by the University Grants Commission of India (UGC India) under Sr. No. 2061440966, Ref. No. 22/06/2014(i)EU-V

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Abbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, S.S., Abbas, S. & Malik, M. Periodic Solutions of the N-Preys and M-Predators Model with Variable Rates on Time Scales. Indian J Pure Appl Math 51, 945–967 (2020). https://doi.org/10.1007/s13226-020-0443-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-020-0443-3

Key words

2010 Mathematics Subject Classification

Navigation