Skip to main content
Log in

Microbial inactivation by high pressure processing: principle, mechanism and factors responsible

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

High-pressure processing (HPP) is a novel technology for the production of minimally processed food products with better retention of the natural aroma, fresh-like taste, additive-free, stable, convenient to use. In this regard safety of products by microbial inactivation is likely to become an important focus for food technologists from the research and industrial field. High pressure induces conformational changes in the cell membranes, cell morphology. It perturbs biochemical reactions, as well as the genetic mechanism of the microorganisms, thus ensures the reduction in the microbial count. Keeping in view the commercial demand of HPP products, the scientific literature available on the mechanism of inactivation by high pressure and intrinsic and extrinsic factors affecting the efficiency of HPP are systematically and critically analyzed in this review to develop a clear understanding of these issues. Modeling applied to study the microbial inactivation kinetics by HPP is also discussed for the benefit of interested readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott JA, Harker FR. Texture. pp. 1-30. In: The commercial storage of fruits, vegetables, florist, and nursery stock: agricultural handbook. Gross KC, Wang CY, Saltveit M (eds). USDA, ARS Beltsville, USA (2004)

  • Abe F. Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: Perspectives from piezophysiology. Biosci. Biotechnol. Biochem. 71: 2347-2357 (2007)

    CAS  PubMed  Google Scholar 

  • Ali N, Popovi V, Koutchma T, Warriner K, Zhu Y. Effect of thermal, high hydrostatic pressure, and ultraviolet-C processing on the microbial inactivation, vitamins, chlorophyll, antioxidants, enzyme activity, and color of wheatgrass juice. J. Food Process Eng. 43(1): e13036 (2019)

    Google Scholar 

  • Alpas H, Kalchayanand N, Bozoglu F, Ray B. Interactions of high hydrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of food borne pathogens. Int. J. Food Microbiol. 60: 33-42 (2000)

    Google Scholar 

  • Aymerich T, Jofre A, Garriga M, Hugas M. Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. J. Food Prot. 68: 173-177 (2005)

    PubMed  Google Scholar 

  • Balakrishna AK, Wazed MA, and Farid M. A review on the effect of high pressure processing (hpp) on gelatinization and infusion of nutrients. Molecules. 25(10): 2369 (2020)

    CAS  PubMed Central  Google Scholar 

  • Balasubramaniam VM, Farkas D. High-pressure food Processing. Food Sci. Technol. Int. 14: 413-418 (2008)

    Google Scholar 

  • Balasubramanian S, Balasubramaniam VM. Compression heating influence of pressure transmitting fluids on bacteria inactivation during high pressure processing. Food Res. Int. 36: 661–668 (2003)

    Google Scholar 

  • Bansal V, Jabeen K, Rao PS. Prasad P, Yadav SK. Effect of high pressure processing (HPP) on microbial safety, physicochemical properties, and bioactive compounds of whey-based sweet lime (whey-lime) beverage. Food Measure. 13: 454-465 (2019)

  • Basak S, Ramaswamy HS, Piette JPG. High pressure destruction kinetics of Leuconostoc mesenteroides and Saccharomyces cerevisiae in single strength and concentrated orange juice. Innov. Food Sci. Emerg. Technol. 3: 223-231 (2002)

    CAS  Google Scholar 

  • Bevilacqua A, Speranza B, Sinigaglia M, Corbo MR. A focus on the death kinetics in predictive microbiology: Benefits and limits of the most important models and some tools dealing with their application in foods. Foods. 4: 565-580 (2015)

    PubMed  PubMed Central  Google Scholar 

  • Black EP, Huppertz T, Kelly AL, Fitzgerald G F. Baroprotection of vegetative bacteria by milk constituents: A study of Listeria innocua. Int. Dairy J. 17: 104-110 (2007)

    CAS  Google Scholar 

  • Bozoglu F, Alpas H, Kaletunc G. Injury recovery of food borne pathogens in high hydrostatic pressure treated milk during storage. FEMS Immunol. Med. Microbiol. 40: 243-247 (2004)

    CAS  PubMed  Google Scholar 

  • Buckow R, Weiss U, Knorr D. Inactivation kinetics of apple polyphenol oxidase in different pressure–temperature domains. Innov. Food Sci. Emerg. Technol. 10: 441-448 (2009)

    CAS  Google Scholar 

  • Buzrul S, Alpas H. Modeling the synergistic effect of high pressure and heat on inactivation kinetics of Listeria innocua: A preliminary study. FEMS Microbiol. Lett. 238: 29-36 (2004)

    CAS  PubMed  Google Scholar 

  • Buzrul S, Alpas H, Largeteau A, Demazeau G. Inactivation of Escherichia coli and Listeria innocua in kiwifruit and pineapple juices by high hydrostatic pressure. Int. J. Food Microbiol. 124: 275-278 (2008)

    CAS  PubMed  Google Scholar 

  • Campanella OH, Peleg M. Theoretical comparison of a new and the traditional method to calculate Clostridium botulinum survival during thermal inactivation. J. Sci. Food Agric. 81: 1069-1076 (2001)

    CAS  Google Scholar 

  • Carreño JM, Gurrea MC, Sampedro F, Carbonell JV. Effect of high hydrostatic pressure and high-pressure homogenisation on Lactobacillus plantarum inactivation kinetics and quality parameters of mandarin juice. Eur. Food Res. Technol. 232: 265-274 (2011)

    Google Scholar 

  • Casadei MA, Mañas P, Niven G, Needs E, Mackey BM. Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl. Environ. Microbiol. 68: 5965-5972 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Rao PS, Mishra HN. Empirical model based on Weibull distribution describing the destruction kinetics of natural microbiota in pineapple (Ananas comosus L.) puree during high-pressure processing. Int. J. Food Microbiol. 211: 117-1127 (2015).

    PubMed  Google Scholar 

  • Chapleau N, Ritz M, Delépine S, Jugiau F, Federighi M, de Lamballerie M. Influence of kinetic parameters of high pressure processing on bacterial inactivation in a buffer system. Int. J. Food Microbiol. 106: 324-330 (2006)

    CAS  PubMed  Google Scholar 

  • Chavan RS, Sehrawat R, Nema PK, Sandeep K. High pressure processing of dairy products. pp. 127-150. In: Dairy engineering advanced technologies and their applications. Meghwal M, Goyal MR, Chavan RS (eds). Apple Academic Press, U.S.A. (2014)

    Google Scholar 

  • Chen H, Hoover DG. Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innov. Food Sci. Emerg. Technol. 4: 25-34 (2003)

    Google Scholar 

  • Considine KM, Kelly AL, Fitzgerald GF, Hill C, Sleator RD. High-pressure processing-effects on microbial food safety and food quality. FEMS Microbiol. Lett. 281: 1-9 (2008)

    CAS  PubMed  Google Scholar 

  • Cruz-Romero M, Kelly AL, Kerry JP. Effects of high-pressure treatment on the microflora of oysters (Crassostrea gigas) during chilled storage. Innov. Food Sci. Emerg. Technol. 9: 441–447 (2008)

    Google Scholar 

  • Daher D, Gourrierec SL, Pérez-Lamela C. Effect of high pressure processing on the microbial inactivation in fruit preparations and other vegetable based beverages. Agriculture 7: 72 (2017)

    Google Scholar 

  • Daryaei H, Yousef AE, Balasubramaniam VM. pp. 271-294. Microbiological aspects of high-pressure processing of food: inactivation of microbial vegetative cells and spores. In: High Pressure Processing of Food. Springer, New York (2016)

  • Dogan C, Erkmen O. High pressure inactivation kinetics of Listeria monocytogenes inactivation in broth, milk, and peach and orange juices. J. Food Eng. 62: 47-52 (2004)

    Google Scholar 

  • Donsì G, Ferrari G, Maresca P. Pulsed high pressure treatment for the inactivation of Saccharomyces cerevisiae: The effect of process parameters. J. Food Eng. 78: 984-990 (2007)

    Google Scholar 

  • Doona CJ, Feeherry FE, Ross EW. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing. Int. J. Food Microbiol. 100: 21-32 (2005)

    PubMed  Google Scholar 

  • Erkmen O. Mathematical modeling of Salmonella typhimurium inactivation under high hydrostatic pressure at different temperatures. Food Bioprod. Process. 87: 68-73 (2009).

    Google Scholar 

  • Furukawa S, Shimoda M, Hayakawa I. Mechanism of the inactivation of bacterial spores by reciprocal pressurization treatment. J. Appl. Microbiol. 94: 836- 841 (2003)

    CAS  PubMed  Google Scholar 

  • Gänzle MG, Vogel RF. On-line fluorescence determination of pressure mediated outer membrane damage in Escherichia coli. Syst. Appl. Microbiol. 24: 477-485 (2001)

    PubMed  Google Scholar 

  • Gao YL, Ju XR, Jiang HH. Use of response surface methodology to investigate the effect of food constituents on Staphylococcus aureus inactivation by high pressure and mild heat. Process Biochem. 41: 362-369 (2006)

    CAS  Google Scholar 

  • Gonzalez ME, Barrett DM. Thermal, high pressure and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality. J. Food Sci. 75: R121–R130 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan D, Chen H, Hoover DG. Inactivation of Salmonella typhimurium DT 104 in UHT whole milk by high hydrostatic pressure. Int. J. Food Microbiol. 104: 145-153 (2005)

    PubMed  Google Scholar 

  • Guillou S, Membré J-M (2019) Inactivation of Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica under high hydrostatic pressure: a quantitative analysis of existing literature data. J. Food Protec. 82: 1802–1814 (2019)

    CAS  Google Scholar 

  • Heinz V, Buckow R. Food preservation by high pressure. J. Consumer Protect. Food Safety. 5: 73-81 (2009)

    Google Scholar 

  • Hereu A, Dalgaard P, Garriga M, Aymerich T, Bover-Cid S. Modeling the high-pressure inactivation kinetics of Listeria monocytogenes on RTE cooked meat products. Innov. Food Sci. Emerg. Technol. 16: 305-315 (2012)

    CAS  Google Scholar 

  • Hiremath ND, Ramaswamy HS. High-pressure destruction kinetics of spoilage and pathogenic microorganisms in mango. J. Food Process. Preserv. 36: 113-125 (2012)

    Google Scholar 

  • Hu X, Mallikarjunan P, Koo J, Andrews LS, Jahncke ML. Comparison of kinetic models to describe high pressure and gamma irradiation used to inactivate Vibrio vulnificus and Vibrio parahaemolyticus prepared in buffer solution and whole oysters. J. Food Prot. 68: 292-295 (2005)

    PubMed  Google Scholar 

  • Huang H, Hsiang-Mei L, Yang BB, Chung-Yi W. Responses of microorganisms to high hydrostatic pressure processing. Food Control. 40: 250-259 (2014)

    Google Scholar 

  • Huang H-W, Hsu C-P, Wang C-Y. Healthy expectations of high hydrostatic pressure treatment in food processing industry. J. Food Drug Anal. 28: 1-13 (2020)

    CAS  PubMed  Google Scholar 

  • Kalagatur NK, Kamasani JR, Mudili V, Krishna K, Chauhan OP, Sreepathi MH. Effect of high pressure processing on growth and mycotoxin production of Fusarium graminearum in maize. Food Biosci. 21: 53-59 (2018)

    CAS  Google Scholar 

  • Kalchayanand N, Frethem C, Dunne P, Sikes A, Ray B. Hydrostatic pressure and bacteriocin-triggered cell wall lysis of Leuconostoc mesenteroides. Innov. Food Sci. Emerg. Technol. 3: 33-40 (2002)

    CAS  Google Scholar 

  • Kaur BP, Rao PS. Process optimization for high-pressure processing of black tiger shrimp (Penaeus monodon) using response surface methodology. Food Sci. Technol. Int. 23: 197-208 (2017)

    PubMed  Google Scholar 

  • Kaushik N, Kaur BP, Rao PS, Mishra HN. Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innov. Food Sci. and Emerg. Technol. 22: 40-50 (2015)

  • Klotz B, Pyle DL, Mackey BM. A new mathematical modeling approach for predicting microbial inactivation by high hydrostatic pressure. Appl. Environ Microbiol. 73: 2468-2478 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klotz B, Mañas P, Mackey BM. The relationship between membrane damage, release of protein and loss of viability in Escherichia coli exposed to high hydrostatic pressure. Int. J. Food Microbiol. 137: 214-220 (2010)

    CAS  PubMed  Google Scholar 

  • Koseki S, Yamamoto K. Novel food preservation and microbial assessment techniques. pp. 3-24. In: Novel Food Preservation and Microbial Assessment Techniques. Boziaris IS (ed). CRC press, London, (2014)

  • Koseki S, Yamamoto K. A novel approach to predicting microbial inactivation kinetics during high pressure processing. Int. Food Microbiol. 116: 275-82 (2007b)

    CAS  Google Scholar 

  • Koseki S, Yamamoto K. Water activity of bacterial suspension media unable to account for the baroprotective effect of solute concentration on the inactivation of Listeria monocytogenes by high hydrostatic pressure. Int. J. Food Microbiol. 115: 43-47 (2007a)

    CAS  PubMed  Google Scholar 

  • Kumar A, Sehrawat R, Swer TL Upadhyay A. High pressure processing of fruits and vegetables. Vol. 1, pp. 165-184. In: Technological Interventions in Processing of Fruits and Vegetables, Sehrawat R, Khan KA, Goyal MR, Paul PK (eds). Apple Academic Press, U.S.A (2018)

  • Lado BH, Yousef AE. Alternative food-preservation technologies: efficacy and mechanisms. Microbes Infect. 4: 433-440 (2002)

    PubMed  Google Scholar 

  • Landfeld A, Matser A, Strohalm J, Oey I, Van der Plancken I, Grauwet T. Hendrickx M, Moates G, Furfarod ME, Waldron K, Betz M, Halama R, Houska M. Can we qualitatively obtain the same time-temperature history using different pilot HP units? Innov. Food Sci. Emerg. Technol. 12: 226-234 (2011)

    Google Scholar 

  • Lee DU, Heinz V, Knor D. Biphasic inactivation kinetics of Escherichia coli in liquid whole egg by high hydrostatic) pressure treatments. Biotechnol. Prog. 17: 1020-1025 (2001)

    CAS  PubMed  Google Scholar 

  • Lee YC, Hsieh CY, Chen ML, Wang CY, Lin CS, Tsai YH. High-pressure inactivation of histamine-forming bacteria Morganella morganii and Photobacterium phosphoreum. J. Food Prot. 83: 621-627 (2020)

    CAS  PubMed  Google Scholar 

  • Maldonado JA, Schaffner DW, Cuitiño AM, Karwe MV. In situ studies of microbial inactivation during high pressure processing. High Pressure Res. 36: 79-89 (2016)

    CAS  Google Scholar 

  • Malone AS, Shellhammer TH, Courtney PD. Effects of high pressure on the viability, morphology, lysis, and cell wall hydrolase activity of Lactococcus lactis subsp. cremoris. Appl. Environ. Microbiol. 68: 4357-4363 (2002)

  • Mañas P, Pagán R. Microbial inactivation by new technologies of food preservation. J. App. Microbiol. 98: 1387-1399 (2005)

    Google Scholar 

  • Marx G, Moody A, Bermúdez-Aguirre D. A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: high hydrostatic pressure, pulsed electric fields and thermo-sonication. Int. J. Food Microbiol. 151: 327-337 (2011)

    PubMed  Google Scholar 

  • Messens W, Estepar-Garcia J, Dewettinck K, Huyghebaert A. Proteolysis of high-pressure-treated Gouda cheese. Int. Dairy J. 9: 775-782 (1999)

    CAS  Google Scholar 

  • Molina-Höppner A, Doster W, Vogel RF, Gänzle MG. Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high pressure treatments. Appl. Environ. Microbiol. 70: 2013-2020 (2004)

    PubMed  PubMed Central  Google Scholar 

  • Moussa M, Perrier-cornet J, Gervais P. Damage in Escherichia coli cells treated with a combination of high hydrostatic pressure and subzero temperature. Appl. Environ. Microbiol. 73: 6508-6518 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niven GW, Miles CA, Mackey BM. The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: an in vivo study using differential scanning calorimetry. Microbiol. 145: 419-425 (1999)

    CAS  Google Scholar 

  • Noma S, Shimoda M, Hayakawa I. Inactivation of vegetative bacteria by rapid decompression treatment. J. Food Sci. 67(9): 3408-3411 (2002)

    CAS  Google Scholar 

  • Palou E, Lopez-Malo J, Welti-Chanes J. pp. 715-726. Innovative fruit preservation methods using high pressure. In: Engineering and Food for the 21st Century. Welti-Chanes J, Barbosa-Cánovas GV, Aguilera JM (eds). CRC Press, Washington (2002)

  • Park SW, Sohn KY, Shin JH, Lee HJ. High hydrostatic pressure inactivation of Lactobacillus viridescens and its effects on ultrastructure of cells. Int. J. Food Sci. Technol. 36: 775-781 (2001)

    CAS  Google Scholar 

  • Patterson MF. Microbiology of pressure-treated foods. J. Appl. Microbiol. 98: 1400-1409 (2005)

    CAS  PubMed  Google Scholar 

  • Pavuluri SR, Kaur BP. pp. 17-18 High pressure inactivation kinetics of Escherichia coli in black tiger shrimp (Penaeus Monodon). In: International Conference on Biological, Civil and Environmental Engineering (BCEE-2014), Dubai, UAE (2014)

  • Perrier-Cornet JM, Maréchal PA, Gervais P. A new design intended to relate high pressure treatment to yeast cell mass transfer. J. Biotechnol. 41: 49-58 (1995)

    CAS  PubMed  Google Scholar 

  • Pilavtepe-Çelik M, Balaban MO Alpas, H, Yousef AE. Image analysis based quantification of bacterial volume change with high hydrostatic pressure. J. Food Sci.73: 423-429 (2008)

  • Pilavtepe-Çelik M, Buzrul S, Alpas H, Bozoglu F. Development of a new mathematical model for inactivation of Escherichia coli O157:H7 and Staphylococcus aureus by high hydrostatic pressure in carrot juice and peptone water. J. Food Eng. 90: 388-394 (2009)

    Google Scholar 

  • Pilavtepe-Çelik M, Yousef A, Alpas H. Physiological changes of Escherichia coli O157:H7 and Staphylococcus aureus following exposure to high hydrostatic pressure. J. Verbr. Lebensm. 8: 175-183 (2013)

    Google Scholar 

  • Pinto CA, Moreira SA, Fidalgo LG, Inácio RS, Barba FJ, Saraiva JA. Effects of high-pressure processing on fungi spores: Factors affecting spore germination and inactivation and impact on ultrastructure. Compr. Rev. Food Sci. Food Saf. 19: 553-573 (2020)

    CAS  PubMed  Google Scholar 

  • Prapaiwong N, Wallace RK, Arias CR. Bacterial loads and microbial composition in high pressure treated oysters during storage. Int. J. Food Microbiol. 131: 145–150 (2009)

    CAS  PubMed  Google Scholar 

  • Ramaswamy HS, Riahi E, Idziak E. High-pressure destruction kinetics of E. coli (29055) in apple juice. J. Food Sci. 68, 1750-1756 (2003)

    CAS  Google Scholar 

  • Ramaswamy HS, Zaman SU, Smith JP. High pressure destruction kinetics of Escherichia coli (O157:H7) and Listeria monocytogenes (Scott A) in fish slurry. J. Food Eng. 87: 99-106 (2008)

    Google Scholar 

  • Rastogi NK, Raghavarao KSMS, Balasubramaniam VM, Rajan S, Niranjan K, Knorr D. Opportunities and challenges in high pressure processing of foods. Crit. Rev. Food Sci. Nutr. 47: 69-112 (2007)

    CAS  PubMed  Google Scholar 

  • Rendueles E, Omar MK, Alvseike O, Alonso-Calleja C, Capita R, Prieto M. Microbiological food safety assessment of high hydrostatic pressure processing: A review. Food Sci. Technol. 44: 1251-1260 (2011)

    CAS  Google Scholar 

  • Ritz M, Jugiau F, Rama F, Courcoux P, Semenou M, Federighi M. Inactivation of Listeria monocytogenes by high hydrostatic pressure: effects and interactions of treatment variables studied by analysis of variance. Food Microbiol. 17: 375-382 (2000)

    CAS  Google Scholar 

  • Ritz M, Tholozan JL, Federighi M, Pilet MF. Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure. Int. J. Food Microbiol. 79: 47-53 (2002)

    CAS  PubMed  Google Scholar 

  • Robey M, Benito A, Hutson RG, Pascual C, Park SF, Mackey BM. Variation in resistance to high hydrostatic pressure and rpoS heterogeneity in natural isolates of Escherichia coli O157:H7. Appl Environ Microbiol. 67: 490-497 (2001)

    Google Scholar 

  • Rong C, Ling Z, Huihui S, Qi L. Characterization of microbial community in high-pressure treated oysters by high-throughput sequencing technology. Innov. Food Sci. Emerg. Technol. 45: 241–248 (2018)

    CAS  Google Scholar 

  • Serment-Moreno V, Barbosa-Cánovas G, Torres JA, Welti-Chanes J. High-pressure processing: kinetic models for microbial and enzyme inactivation. Food Eng. Rev. 6: 56-88 (2014)

    CAS  Google Scholar 

  • Serment-Moreno V, Fuentes C, Barbosa-Cánovas G, Torres JA, Welti-Chanes J. Evaluation of high pressure processing kinetic models for microbial inactivation using standard statistical tools and information theory criteria, and the development of generic time-pressure functions for process design. Food Bioprocess Technol. 8: 1244-257 (2015)

    CAS  Google Scholar 

  • Shankar R. High pressure processing- changes in quality characteristic of various food material processed under high pressure technology. Int. J. Innov. Sci. Res. 3: 168-186 (2014)

    Google Scholar 

  • Shimada S, Andou M, Naito N, Yamada N, Osumi M, Hayashi R. Effects of hydrostatic pressure on the ultrastructure and leakage of internal substances in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 40: 123-131 (1993)

    CAS  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S. The Bacterial Cell Envelope. Old Spring Harb Perspect Biol. 2(5): a000414. (2010)

    Google Scholar 

  • Slongo A P, Rosenthal A, Camargo LMQ, Deliza R, Mathias SPM, Aragão GMF. Modeling the growth of lactic acid bacteria in sliced ham processed by high hydrostatic pressure. LWT- Food Sci. Technol. 42: 303-306 (2009)

    CAS  Google Scholar 

  • Smelt, JPPM. Recent advances in the microbiology of high pressure processing. Trends Food Sci. Technol. 9: 152-158 (1998)

    CAS  Google Scholar 

  • Smelt JP, Hellemons JC, Wouters PC, Van GSJ. Physiological and mathematical aspects in setting criteria for decontamination of foods by physical means. Int. J. Food Microbiol. 78: 57-77 (2002)

    PubMed  Google Scholar 

  • Stewart CM, Jewett FF, Dunne CP, Hoover DG. Effect of concurrent high hydrostatic pressure, acidity and heat on the injury and destruction of Listeria monocytogenes. J. Food Safety. 17: 23-26 (1997)

    Google Scholar 

  • Syed Q, Reineke K, Saldo J, Buffa M, Guamis B, Knorr D. Effect of compression and decompression rates during high hydrostatic pressure processing on inactivation kinetics of bacterial spores at different temperatures. Food Control. 25: 361-367 (2012)

    Google Scholar 

  • Tewari G, Jayas DS, Holley RA. High pressure processing of foods: An overview. Sciences Des Aliments. 19: 619-661 (1999)

    Google Scholar 

  • Tewari S, Sehrawat R, Nema PK, Kaur BP. Preservation effect of high-pressure processing on ascorbic acid of fruits and vegetables: A review. J. Food Biochem. 41(1): e12319 (2016)

    Google Scholar 

  • Thakur BR, Nelson PE. High‐pressure processing and preservation of food, Food Rev. Int. 14, 427-447 (2009)

    Google Scholar 

  • Tholozan JL, Ritz M, Jugiau F, Federighi M, Tissier JP. Physiological effects of high hydrostatic pressure treatments on Listeria monocytogenes and Salmonella typhimurium. J. Appl. Microbiol. 88: 202-212 (2000)

    CAS  PubMed  Google Scholar 

  • Ulmer HM, Ga¨nzle MG, Vogel RF. Effects of high pressure on survival and metabolic activity of Lactobacillus plantarum TMW1.460. Appl. Environ. Microbiol. 66: 3966-3973 (2000)

  • Van Opstal I, Vanmuysen SCM, Michiels CW. High sucrose concentration protects E. coli against high pressure inactivation but not against high pressure sensitization to the lactoperoxidase system. Int. J. Food Microbiol. 88: 1-9 (2003)

  • Van Opstal I, Vanmuyse SCM, Wuytack EY, Masschalck, B, Michiels CW. Inactivation of Escherichia coli by high hydrostatic pressure at different temperatures in buffer and carrot juice. Int. J. Food Microbiol. 98: 179-191 (2005)

    PubMed  Google Scholar 

  • Wang C-Y, Hsu C-P, Huang H-W, Yang BB. The relationship between inactivation and morphological damage of Salmonella enterica treated by high hydrostatic pressure. Food Res. Int. 54: 1482-1487 (2013a)

    CAS  Google Scholar 

  • Wang C-Y, Huang H-W, Hsu C-P, Shyu Y-T, Yang BB. Inactivation and morphological damage of Vibrio parahaemolyticus treated with high hydrostatic pressure. Food Control. 32: 348-353 (2013b)

    CAS  Google Scholar 

  • Woldemariam HW, Emire SA. High pressure processing of foods for microbial and mycotoxins control: current trends and future prospects. Cogent Food Agri. 5: 1622184 (2019)

    Google Scholar 

  • Yaldagard M, Mortazavi SA, Tabatabaie F. The principles of ultra high pressure technology and its application in food processing/preservation: a review of microbiological and quality aspects. Afr. J. Biotechnol. 7: 2739-2767 (2008)

    CAS  Google Scholar 

  • Yang B, Shi Y, Xia X, Xi M, Wang X, Ji B, Meng J. Inactivation of food borne pathogens in raw milk using high hydrostatic pressure. Food Control. 28: 273-278 (2012)

    CAS  Google Scholar 

  • Yordanov DG, Angelova GV. High pressure processing for foods preserving. Biotechnol. Biotec. Eq. 24: 1940-1945 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Institute of Food Technology and Entrepreneurship and Management Kundli, Haryana, India for providing the facilities to complete the review work. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhat K. Nema.

Ethics declarations

Conflict of interest

Authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehrawat, R., Kaur, B.P., Nema, P.K. et al. Microbial inactivation by high pressure processing: principle, mechanism and factors responsible. Food Sci Biotechnol 30, 19–35 (2021). https://doi.org/10.1007/s10068-020-00831-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-020-00831-6

Keywords

Navigation