Skip to main content

Advertisement

Log in

Salinity and Simulated Herbivory Influence Spartina alterniflora Traits and Defense Strategy

  • Short Communication
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Sea level rise is expected to push saline waters into previously fresher regions of estuaries, and higher salinities may expose oligohaline marshes to invertebrate herbivores typically constrained by salinity. The smooth cordgrass, Spartina alterniflora (syn. Sporobolus alterniflorus), can defend itself against herbivores in polyhaline marshes, however it is not known if S. alterniflora’s defense varies along the mesohaline to oligohaline marsh gradient in estuaries. I found that S. alterniflora from a mesohaline marsh is better defended than plants from an oligohaline marsh, supporting the optimal defense theory. Higher salinity treatments lowered carbon content, C:N, and new stem biomass production, traits associated with a tolerance strategy, suggesting that salinity may mediate the defense response of S. alterniflora. Further, simulated herbivory increased the nitrogen content and decreased C:N of S. alterniflora. This indicates that grazing may increase S. alterniflora susceptibility to future herbivory via improved forage quality. Simulated herbivory also decreased both belowground and new stem biomass production, highlighting a potential pathway in which herbivory can indirectly facilitate marsh loss, as S. alterniflora biomass is critical for vertical accretion and marsh stability under future sea level rise scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alberti, J., A.M. Casariego, P. Daleo, E. Fanjul, B. Silliman, M. Bertness, and O. Iribarne. 2010. Abiotic stress mediates top-down and bottom-up control in a Southwestern Atlantic salt marsh. Oecologia 163 (1): 181–191.

    Google Scholar 

  • Angelini, C., S.G. van Montfrans, M.J.S. Hensel, Q. He, and B.R. Silliman. 2018. The importance of an underestimated grazer under climate change: how crab density, consumer competition, and physical stress affect salt marsh resilience. Oecologia 187 (1): 205–217.

    Google Scholar 

  • Basey, J.M., and S.H. Jenkins. 1993. Production of chemical defenses in relation to plant growth rate. Oikos 68 (2): 323–328.

    CAS  Google Scholar 

  • Bertness, M., C.P. Brisson, T.C. Coverdale, M.C. Bevil, S.M. Crotty, and E.R. Suglia. 2014. Experimental predator removal causes rapid salt marsh die-off. Ecology Letters 17 (7): 830–835.

    Google Scholar 

  • Boon, J.D., and M. Mitchell. 2015. Nonlinear change in sea level observed at North American tide stations. Journal of Coastal Research 31: 1295–1305.

    Google Scholar 

  • Buchsbaum, R., I. Valiela, and T. Swain. 1984. The role of phenolic compounds and other plant constituents in feeding by Canada Geese in a coastal marsh. Oecologia 63 (3): 343–349.

    Google Scholar 

  • Buchsbaum, R., J. Wilson, and I. Valiela. 1986. Digestibility of plant constituents by Canada Geese and Atlantic Brant. Ecology 67 (2): 386–393.

    Google Scholar 

  • Burghardt, K.T., and O.J. Schmitz. 2015. Influence of plant defenses and nutrients on trophic control of ecosystems. In Trophic Ecology: Bottom-Up and Top-Down Interactions across Aquatic and Terrestrial Systems, ed. T.C. Hanley and K.J. LaPierre, 203–232. Cambridge University Press. https://www.amazon.com/Trophic-Ecology-Interactions-Terrestrial-Ecological-ebook/dp/B00VAOVOFA.

  • Cebrian, J., J.B. Shurin, E.T. Borer, B.J. Cardinale, J.T. Ngai, M.D. Smith, and W.F. Fagan. 2009. Producer nutritional quality controls ecosystem trophic structure. PLoS One 4 (3): e4929. https://doi.org/10.1371/journal.pone.0004929.

    Article  CAS  Google Scholar 

  • Close, D.C., and C. McArthur. 2002. Rethinking the role of many plant phenolics: protection from photodamage not herbivores? Oikos 99 (1): 166–172.

    CAS  Google Scholar 

  • Coley, P.D., J.P. Bryant, and F.S. Chapin III. 1985. Resource availability and plant antiherbivore defense. Science 230 (4728): 895–905.

    CAS  Google Scholar 

  • Costanza, R., R. de Groot, P. Sutton, S. van der Ploeg, S.J. Anderson, I. Kubiszewski, S. Farber, and R.K. Turner. 2014. Changes in the global value of ecosystem services. Global Environmental Change 26: 152–158.

    Google Scholar 

  • Crain, C.M. 2008. Interactions between marsh plant species vary in direction and strength depending on environmental and consumer context. Journal of Ecology 92: 166–173.

    Google Scholar 

  • Cronin, G., and M.E. Hay. 1996. Induction of seaweed chemical defenses by amphipod grazing. Ecology 77 (8): 2287–2301.

    Google Scholar 

  • Daleo, P., J. Alberti, C.M. Bruschetti, J. Pascual, O. Iribarne, and B.R. Silliman. 2015. Physical stress modifies top-down and bottom-up forcing on plant growth and reproduction in a coastal ecosystem. Ecology 96 (8): 2147–2156.

    Google Scholar 

  • Davidson, T.M., and C.E. de Rivera. 2010. Accelerated erosion of saltmarshes infested by the non-native burrowing crustacean Sphaeroma quoianum. Marine Ecology Progress Series 419: 129–136.

    Google Scholar 

  • de Groot, R., L. Brander, S. van der Ploeg, R. Costanza, F. Bernard, L. Braat, M. Christie, N. Crossman, A. Ghermandi, L. Hein, S. Hussain, P. Kumar, A. McVittie, R. Portela, L.C. Rodriguez, P. ten Brink, and P. van Beukering. 2012. Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services 1 (1): 50–61.

    Google Scholar 

  • Dorenbosch, M., and E.S. Bakker. 2012. Effects of contrasting omnivorous fish on submerged macrophyte biomass in temperate lakes: a mesocosm experiment. Freshwater Biology 57 (7): 1360–1372.

    CAS  Google Scholar 

  • Elsey-Quirk, T., and V. Unger. 2018. Geomorphic influences on the contribution of vegetation to soil C accumulation and accretion in Spartina alterniflora marshes. Biogeosciences 15 (1): 379–397.

    CAS  Google Scholar 

  • Failon, C.M., S.S. Wittyngham, and D.S. Johnson. 2020. Ecological associations of Littoraria irrorata with Spartina cynosuroides and Spartina alterniflora. Wetlands. https://doi.org/10.1007/s13157-020-01306-4.

  • Frank, D.A., and S.J. McNaughton. 1993. Evidence for the promotion of aboveground grassland production by native large herbivores in Yellowstone National Park. Oecologia 96 (2): 157–161.

    Google Scholar 

  • Gedan, K.B., B.R. Silliman, and M.D. Bertness. 2009. Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science 1 (1): 117–141. https://doi.org/10.1146/annurev.marine.010908.163930.

    Article  Google Scholar 

  • Grant, K., J. Kreyling, L.F.H. Dienstbach, C. Beierkuhnlein, and A. Jentsch. 2014. Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland. Agriculture, Ecosystems and Environment 186: 11–22.

    Google Scholar 

  • He, Q., and B.R. Silliman. 2016. Consumer control as a common driver of coastal vegetation worldwide. Ecological Monographs 86 (3): 278–294.

    Google Scholar 

  • Hendricks, L.G., H.E. Mossop, and C.E. Kicklighter. 2011. Palatability and chemical defense of Phragmites australis to the marsh periwinkle snail Littoraria irrorata. Journal of Chemical Ecology 37 (8): 838–845.

    CAS  Google Scholar 

  • Henry, R.P., C.J. McBride, and A.H. Williams. 1993. Responses of the marsh periwinkle, Littoraria (Littorina) irrorate to temperature, salinity and dessication, and the potential physiological relationship to climbing behavior. Marine Behaviour and Physiology 24 (1): 45–54. https://doi.org/10.1080/10236249309378877.

    Article  Google Scholar 

  • Herms, D.A., and W.J. Mattson. 1992. The dilemma of plants: to grow or defend. The Quarterly Review of Biology 67 (3): 283–335.

    Google Scholar 

  • Hobbs, C. 2009. York River geology. Journal of Coastal Research 57: 10–16.

    Google Scholar 

  • Holdredge, C., M.D. Bertness, and A.H. Altieri. 2009. Role of crab herbivory in die-off of New England salt marshes. Conservation Biology 23 (3): 672–679.

    Google Scholar 

  • Infante-Izquierdo, M.D., J.M. Castillo, B.J. Grewell, F.J.J. Nieva, and A.F. Muñoz-Rodríguez. 2019. Differential effects of increasing salinity on germination of seedling growth of native and exotic invasive cordgrasses. Plants. 8 (10). https://doi.org/10.3390/plants8100372.

  • Ito, K., and S. Sakai. 2009. Optimal defense strategy against herbivory in plants: conditions selecting for induced defense, constitutive defense, and no-defense. Journal of Theoretical Biology 260 (3): 453–459.

    Google Scholar 

  • Johnson, D.S., and B.J. Jessen. 2008. Do spur-throated grasshoppers, Melanoplus spp. (Orthoptera: Acrididae), exert top-down control on smooth cordgrass Spartina alterniflora in Northern New England? Estuaries and Coasts 31 (5): 912–919.

    Google Scholar 

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature. 504 (7478): 53–60. https://doi.org/10.1038/nature12856.

    Article  CAS  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37 (23). https://doi.org/10.1029/2010GL045489.

  • Leonard, L.A., and M.E. Luther. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography 40 (8): 1474–1484.

    Google Scholar 

  • Long, J.D. and L.D. Porturas. 2014. Herbivore impacts on marsh production depend upon a compensatory continuum mediated by salinity stress. PLoS ONE 9 (10). https://doi.org/10.1371/journal.pone.0110419.

  • Long, J.D., J.L. Mitchell, and E.E. Sotka. 2011. Local consumers induce resistance differentially between Spartina populations in the field. Ecology 92 (1): 180–188.

    Google Scholar 

  • Luo, M., J.F. Huang, W.F. Zhu, and C. Tong. 2019. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review. Hydrobiologia 827 (1): 31–49.

    CAS  Google Scholar 

  • MacTavish, R.M., and R.A. Cohen. 2014. A simple, inexpensive, and field-relevant microcosm tidal simulator for use in marsh macrophyte studies. Applications in Plant Sciences 2 (11). https://doi.org/10.3732/apps.14O0058.

  • MacTavish, R.M., and R.A. Cohen. 2017. Water column ammonium concentration and salinity influence nitrogen uptake and growth of Spartina alterniflora. Journal of Experimental Marine Biology and Ecology 488: 52–59.

    CAS  Google Scholar 

  • Massey, F.P., A.R. Ennos, and S.E. Hartley. 2007. Grasses and the resource availability hypothesis: the importance of silica-based defences. Journal of Ecology 95 (3): 414–424.

    CAS  Google Scholar 

  • Mauricio, R., M.D. Rausher, and D.S. Burdick. 1997. Variation in the defense strategies of plants: are resistance and tolerance mutually exclusive? Ecology 78 (5): 1301–1311.

    Google Scholar 

  • Montagna, P., P. Palmer, and J. Pollack. 2013. Hydrological Changes and Estuarine Dynamics. In Springerbriefs in Environmental Science, vol 8, 94. https://doi.org/10.1007/978-1-4614-5833-3.

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83 (10): 2869–2877.

    Google Scholar 

  • Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment 25 (2): 239–250.

    CAS  Google Scholar 

  • Najjar, R.G., C.R. Pyke, M.B. Adams, D. Breitburg, C. Hershner, M. Kemp, R. Howarth, M.R. Mulholland, M. Paolisso, D. Secor, K. Sellner, D. Wardrop, and R. Wood. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86 (1): 1–20.

    CAS  Google Scholar 

  • Neilson, E.H., J.Q.D. Goodger, I.E. Woodrow, and B.L. Møller. 2013. Plant chemical defense: at what cost? Trends in Plant Science 18 (5): 250–258.

    CAS  Google Scholar 

  • Odum, W.E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics 19 (1): 147–176.

    Google Scholar 

  • Pennings, S.C., T.H. Carefoot, E.L. Siska, M.E. Chase, and T.A. Page. 1998. Feeding preferences of a generalist salt-marsh crab: relative importance of multiple plant traits. Ecology 79 (6): 1968–1979.

    Google Scholar 

  • Perry, J.E., and R.B. Atkinson. 1997. Plant diversity along a salinity gradient of four marshes on the York and Pamunkey Rivers in Virginia. Castanea 62: 112–118.

    Google Scholar 

  • R Core Team. 2019. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing http://www.r-project.org/index.html.

    Google Scholar 

  • Rhoads, D.F. 1979. Evolution of plant chemical defense against herbivores. In Herbivores: their interaction with secondary plant metabolites, eds. G.A. Rosenthal and D. H. Janzen, 1–55. New York: Academic Press.

  • Salgado, C.S., and S.C. Pennings. 2005. Latitudinal variation in palatability of salt-marsh plants: are differences constitutive? Ecology 86 (6): 1571–1579.

    Google Scholar 

  • Sallenger, A.H., Jr., K.S. Doran, and P.A. Howd. 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change 2 (12): 884–888. https://doi.org/10.1038/NCLIMATE1597.

    Article  Google Scholar 

  • Sieg, R.D., K. Wolfe, D. Willey, V. Ortiz-Santiago, and J. Kubanek. 2013. Chemical defenses against herbivores and fungi limit establishment of fungal farms on salt marsh angiosperms. Journal of Experimental Marine Biology and Ecology 446: 122–130.

    CAS  Google Scholar 

  • Silliman, B.R., J. van de Koppel, M.D. Bertness, L.E. Stanton, and I.A. Mendelssohn. 2005. Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310 (5755): 1803–1806.

    CAS  Google Scholar 

  • Siska, E.L., S.C. Pennings, T.L. Buck, and M.D. Hanesak. 2002. Latitudinal variation in palatability of salt-marsh plants: which traits are responsible? Ecology 83 (12): 3369–3381.

    Google Scholar 

  • Stamp, N. 2003. Out of the quagmire of plant defense hypotheses. The Quarterly Review of Biology 78 (1): 23–55.

    Google Scholar 

  • Staton, J.L., and D.L. Felder. 1992. Osmoregulatory capacities in disjunct western Atlantic populations of the Sesarma reticulatum complex (Decapoda: Grapsidae). Journal of Crustacean Biology 12 (3): 335–341.

    Google Scholar 

  • Stowe, K.A., R.J. Marquis, C.G. Hochwender, and E.L. Simms. 2000. The evolutionary ecology of tolerance to consumer damage. Annual Review of Ecology and Systematics 31 (1): 565–595.

    Google Scholar 

  • Strauss, S.Y., and A.A. Agrawal. 1999. The ecology and evolution of plant tolerance to herbivory. Trends in Ecology & Evolution 14: 179–185.

    CAS  Google Scholar 

  • Sutter, L.A., R.M. Chambers, and J.E. Perry III. 2015. Seawater intrusion mediates species transition in low salinity, tidal marsh vegetation. Aquatic Botany 122: 32–39.

    CAS  Google Scholar 

  • Sutter, L.A., R.M. Chambers, M. Karp, and J.E. Perry III. 2019. A test of top-down control on plant production and nutrient quality in low-salinity tidal marshes. Aquatic Sciences 81: 15–16.

    Google Scholar 

  • Tiffin, P. 2000. Mechanisms of tolerance to herbivore damage: what do we know? Evolutionary Ecology 14 (4-6): 523–536.

    Google Scholar 

  • VECOS Database. 2020. Virginia Estuarine and Coastal Observing System. Stations: PMK012.18 (Sweet Hall Marsh) and TSK000.23 (Taskinas Creek). http://vecos.vims.edu/. Accessed 15 Mar 2020.

  • Vu, H.D., K. Więski, and S.C. Pennings. 2017. Ecosystem engineers drive creek formation in salt marshes. Ecology 98 (1): 162–174.

    Google Scholar 

  • Więski, K., and S. Pennings. 2014. Latitudinal variation in resistance and tolerance to herbivory of a salt marsh shrub. Ecography 37 (8): 763–769.

    Google Scholar 

  • Wittyngham, S.S., J. Moderan, and K.E. Boyer. 2019. Temperature and salinity effects on submerged aquatic vegetation traits and susceptibility to grazing. Aquatic Botany 158: 103119. https://doi.org/10.1016/j.aquabot.2019.05.004.

    Article  Google Scholar 

  • Zhang, P., B.M.C. Grutters, C.H.A. van Leeuwen, J. Xu, A. Petruzzella, R.F. van den Berg, and E.S. Bakker. 2019. Effects of rising temperature on the growth, stoichiometry, and palatability of aquatic plants. Frontiers in Plant Science 9. https://doi.org/10.3389/fpls.2018.01947.

Download references

Acknowledgments

I thank the following people for help in the field and laboratory: Bethany Williams, Danielle Doucette, and Manisha Pant, and special thanks to Caroline Failon for her hard work and dedication to my mesocosms. Thank you to the Chesapeake Bay National Estuarine Research Reserve of Virginia (CBNERR–VA) for access to the collection sites. Additional gratitude goes to my advisor, Dr. David Johnson, for his support and comments which improved this manuscript. Lastly, I thank Bucket Head and my Tevas for never tiring of algae. This paper is Contribution No. 3949 of the Virginia Institute of Marine Science, William & Mary.

Funding

I am thankful to the Virginia Institute of Marine Science Student Research Grant, Virginia Sea Grant (grant # V721500), and the National Science Foundation (grant # 1832221) for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serina Sebilian Wittyngham.

Additional information

Communicated by R. Scott Warren

Electronic supplementary material

ESM 1

Mean soluble protein content (milligrams/gram dry mass) of S. alterniflora tissues across nitrogen content (percent dry mass). Trend line represents smoothed linear regression line (PNG 904 kb).

High resolution image (EPS 9 kb).

ESM 2

Mean phenolic concentrations (milligrams/gram dry mass) of S. alterniflora tissues across new stem biomass (grams). Trend line represents smoothed linear regression line (PNG 904 kb).

High resolution image (EPS 8 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wittyngham, S.S. Salinity and Simulated Herbivory Influence Spartina alterniflora Traits and Defense Strategy. Estuaries and Coasts 44, 1183–1192 (2021). https://doi.org/10.1007/s12237-020-00841-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00841-x

Keywords

Navigation