Skip to main content

Advertisement

Log in

Impact of climate change on hydrology components using CORDEX South Asia climate model in Wunna, Bharathpuzha, and Mahanadi, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Detecting the probable impact of climate change responses on hydrological components is most important for understanding such changes on water resources. The impact of climate change on virtual parameters of water was assessed through hydrological modeling of the Wunna, Mahanadi (Middle), and Bharathpuzha watersheds. In this article, future hydrological component responses under two Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios were considered for investigating the runoff, sediment, and water storage components. RegCM4 CSIRO-Mk3.6.0 CORDEX South Asia of RCM model was used which is specially downscaled for the Asian region by IITM-India. Delta change method was adopted to remove bias correction in RCM data. Hydrological simulation for current and future periods was performed by GIS interfaced Soil Water and Assessment Tool (SWAT) model. The surface runoff of Wunna and Bharathpuzha watersheds and the yield of sediment are expected to increase further under RCP8.5 than RCP4.5 and in contrast to Mahanadi watershed. Both blue water storage (BW) and green water storage (GWS) of Wunna watershed are expected to decline under RCP4.5, and rise under RCP8.5 scenario. Both BW and GWS of Bharathpuzha are expected to increase in the future except in western region under RCP4.5 scenario. BW of Mahanadi is expected to increase in the future. However, GWS will decrease in some of the sub-basins. The model-generated results will be helpful for future water resources planning and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abbaspour, K. C., Vejdani, M., Haghighat, S., & Yang, J. (2007). SWAT-CUP calibration and uncertainty programs for SWAT. In MODSIM 2007 international congress on modelling and simulation, modelling and simulation society of Australia and New Zealand (pp. 1596–1602).

  • Afshar, A. A., Hasanzadeh, Y., Besalatpour, A. A., & Pourreza-Bilondi, M. (2017). Climate change forecasting in a mountainous data scarce watershed using CMIP5 models under representative concentration pathways. Theoretical and Applied Climatology, 129(1–2), 683–699.

    Article  Google Scholar 

  • Afshar, A. A., Hassanzadeh, Y., Pourreza-Bilondi, M., & Ahmadi, A. (2018). Analyzing long-term spatial variability of blue and green water footprints in a semi-arid mountainous basin with MIROC-ESM model (case study: Kashafrood River Basin, Iran). Theoretical and Applied Climatology, 134(3-4), 885–899.

    Article  Google Scholar 

  • Aggarwal, R., Kaushal, M., Kaur, S., & Farmaha, B. (2009). Water resource management for sustainable agriculture in Punjab, India. Water Science and Technology, 60(11), 2905–2911.

    Article  Google Scholar 

  • Allen, R. G. (1986). A Penman for all seasons. Journal of Irrigation and Drainage Engineering, 112(4), 348–368.

    Article  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association, 34(1), 73–89.

  • Bajracharya, A. R., Bajracharya, S. R., Shrestha, A. B., & Maharjan, S. B. (2018). Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal. Science of the Total Environment, 625, 837–848.

    Article  CAS  Google Scholar 

  • Batchelor, C. H., Rama Mohan Rao, M. S., & Manohar Rao, S. (2003). Watershed development: a solution to water shortages in semi-arid India or part of the problem? Land Use and Water Resources Research, 3(1732-2016-140278). https://doi.org/10.22004/ag.econ.47866.

  • Beniston, M., & Stoffel, M. (2014). Assessing the impacts of climatic change on mountain water resources. Science of the Total Environment, 493, 1129–1137.

    Article  CAS  Google Scholar 

  • Chen, Y., Marek, G. W., Marek, T. H., Moorhead, J. E., Heflin, K. R., Brauer, D. K., Gowda, P. H., & Srinivasan, R. (2019). Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model. Agricultural Water Management, 221, 13–24.

    Article  Google Scholar 

  • Chou, S. C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., et al. (2014). Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. American Journal of Climate Change, 3(5), 512–525.

    Article  Google Scholar 

  • Du, J., Jia, Y., Hao, C., Qiu, Y., Niu, C., & Liu, H. (2019). Temporal and spatial changes of blue water and green water in the Taihang Mountain Region, China, in the past 60 years. Hydrological Sciences Journal, 1–17. https://doi.org/10.1080/02626667.2019.1599119.

  • Duan, K., & Mei, Y. (2014). A comparison study of three statistical downscaling methods and their model averaging ensemble for precipitation downscaling in China. Theoretical and Applied Climatology, 116(3–4), 707–719.

    Article  Google Scholar 

  • Dubey, S. K., Sharma, D., Babel, M. S., & Mundetia, N. (2020). Application of hydrological model for assessment of water security using multi-model ensemble of CORDEX-South Asia experiments in a semi-arid river basin of India. Ecological Engineering, 143, 105641.

    Article  Google Scholar 

  • Falkenmark M (1995) Coping with water scarcity under rapid population growth. In Conference of SADC ministers, Pretoria (Vol. 23, p. 24)

  • Falkenmark, M., & Rockström, J. (2006). The new blue and green water paradigm: breaking new ground for water resources planning and management. Journal of Water Resources Planning and Management, 129–132. https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(129).

  • Frei, C., Christensen, J. H., Déqué, M., Jacob, D., Jones, R. G., & Vidale, P. L. (2003). Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. Journal of Geophysical Research: Atmospheres, 108(D3).

  • Emami, F., & Koch, M. (2019). Modeling the impact of climate change on water availability in the Zarrine River basin and inflow to the Boukan Dam, Iran. Climate, 7(4), 51.

    Article  Google Scholar 

  • FAO. (2003). The digital soil map of the world. Version 3.6. http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116. Assessed Dec 2018.

  • Ghosh, S., & Mujumdar, P. P. (2008). Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Advances in Water Resources, 31(1), 132–146.

    Article  Google Scholar 

  • Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., et al. (2012). RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Research, 52, 7–29.

    Article  Google Scholar 

  • Gordon, H. B., Whetton, P. H., Pittock, A. B., Fowler, A. M., & Haylock, M. R. (1992). Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: implications for extreme rainfall events. Climate Dynamics, 8(2), 83–102.

    Article  Google Scholar 

  • Hannah, L. (2015). The climate system and climate change, climate change biology (Second Edition, pp. 13–53), Academic Press. https://doi.org/10.1016/B978-0-12-420218-4.00002-0.

  • Hay, L. E. (2000). A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. Journal of the American Water Resources Association, 36(2), 387–397.

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panelon Climate Change, edited by S. Solomon et al. Cambridge Univ. Press,Cambridge, U. K.

  • IWMI, I. (2000). World water supply and demand: 1995 to 2025. Colombo: International Water Management Institute.

    Google Scholar 

  • Kulkarni, A., Kripalani, R. H., & Singh, S. V. (1992). Classification of summer monsoon rainfall patterns over India. International Journal of Climatology, 12(3), 269–280.

    Article  Google Scholar 

  • Lafon, T., Dadson, S., Buys, G., & Prudhomme, C. (2013). Bias correction of daily precipitation simulated by a regional climate model: a comparison of methods. International Journal of Climatology, 33(6), 1367–1381.

    Article  Google Scholar 

  • Lee, H. (2015). In second (Ed.), The climate system and climate change, climate change biology (Vol. 13-53). Academic Press. https://doi.org/10.1016/B978-0-12-420218-4.00002-0.

  • Mondal, A., & Mujumdar, P. P. (2012). On the basin-scale detection and attribution of human-induced climate change in monsoon precipitation and streamflow. Water Resources Research, 48(10). https://doi.org/10.1029/2011WR011468.

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.

    Article  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.

    Article  CAS  Google Scholar 

  • Mujumdar, P. P. (2008). Implications of climate change for sustainable water resources management in India. Physics and Chemistry of the Earth, Parts A/B/C, 33(5), 354–358.

    Article  Google Scholar 

  • Narsimlu, B., Gosain, A. K., Chahar, B. R., Singh, S. K., & Srivastava, P. K. (2015). SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting. Environmental Processes, 2(1), 79–95.

    Article  CAS  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—a discussion of principles. Journal of Hydrology, 10(3), 282–290.

    Article  Google Scholar 

  • Neitsch, S.L., J.G. Arnold, J.R. Kiniry, and J.R. Williams. (2011). Soil and Water Assessment Tool theoretical documentation: version 2009. USDA–ARS, Grassland, Soil and Water Research Laboratory, Temple, TX; and Black land Research and Extension Center, Texas AgriLife Research, Temple, TX. Texas Water Resources Institute Technical Rep. 406, Texas A&M University System, College Station, TX.

  • Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068–1072.

    Article  CAS  Google Scholar 

  • Reshmidevi, T. V., Kumar, D. N., Mehrotra, R., & Sharma, A. (2018). Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs. Journal of Hydrology, 556, 1192–1204.

    Article  Google Scholar 

  • Rodrigues, D. B., Gupta, H. V., & Mendiondo, E. M. (2014). A blue/green water-based accounting framework for assessment of water security. Water Resources Research, 50(9), 7187–7205.

    Article  Google Scholar 

  • Saraf, V. R., & Regulwar, D. G. (2018). Impact of climate change on runoff generation in the Upper Godavari River Basin, India. Journal of Hazardous, Toxic, and Radioactive Waste, 22(4), 04018021.

    Article  Google Scholar 

  • Sarkar, S. K., Saha, M., Takada, H., Bhattacharya, A., Mishra, P., & Bhattacharya, B. (2007). Water quality management in the lower stretch of the river Ganges, east coast of India: an approach through environmental education. Journal of Cleaner Production, 15(16), 1559–1567.

    Article  Google Scholar 

  • Schuol, J., Abbaspour, K. C., Yang, H., Srinivasan, R., & Zehnder, A. J. B. (2008). Modeling blue and green water availability in Africa. Water Resources Research, 44(7). https://doi.org/10.1029/2007WR006609.

  • Shrestha, B., Maskey, S., Babel, M. S., van Griensven, A., & Uhlenbrook, S. (2018). Sediment related impacts of climate change and reservoir development in the Lower Mekong River Basin: a case study of the Nam Ou Basin, Lao PDR. Climatic Change, 149(1), 13–27.

    Article  Google Scholar 

  • Singh, V., Bankar, N., Salunkhe, S. S., Bera, A. K., & Sharma, J. R. (2013). Hydrological stream flow modelling on Tungabhadra catchment: parameterization and uncertainty analysis using SWAT CUP. Current Science, 1187–1199. JSTOR, http://www.jstor.org/stable/24092398. Accessed 1 Oct 2020.

  • Smitha, P. S., Narasimhan, B., Sudheer, K. P., & Annamalai, H. (2018). An improved bias correction method of daily rainfall data using a sliding window technique for climate change impact assessment. Journal of Hydrology, 556, 100–118.

    Article  Google Scholar 

  • Sordo-Ward, A., Granados, I., Iglesias, A., & Garrote, L. (2019). Blue water in Europe: estimates of current and future availability and analysis of uncertainty. Water, 11(3), 420.

    Article  CAS  Google Scholar 

  • Srinivasan, R., Ramanarayanan, T. S., Arnold, J. G., & Bednarz, S. T. (1998). Large area hydrologic modeling and assessment part II: model application 1. JAWRA Journal of the American Water Resources Association, 34(1), 91–101.

    Article  CAS  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498.

  • USDA-SCS. (2004). United States Department of Agriculture, Soil Conservation Service estimation of direct runoff from storm rainfall. In National Engineering Handbook, 630. Washington, DC.

  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: an overview. Climatic Change, 109(1–2), 5–31.

    Article  Google Scholar 

  • Veettil, A. V., & Mishra, A. K. (2016). Water security assessment using blue and green water footprint concepts. Journal of Hydrology, 542, 589–602.

    Article  Google Scholar 

  • Williams, J. R. (1969). Flood routing with variable travel time or variable storage coefficients. Transactions of ASAE, 12(1), 100–0103.

    Article  Google Scholar 

  • Wörner, V., Kreye, P., & Meon, G. (2019). Effects of bias-correcting climate model data on the projection of future changes in high flows. Hydrology, 6(2), 46.

    Article  Google Scholar 

  • Xu, L., Xie, S. P., & Liu, Q. (2012). Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections. Journal of Geophysical Research, Oceans, 117(C12). https://doi.org/10.1029/2012JC008377.

  • Yuan, Z., Xu, J., Meng, X., Wang, Y., Yan, B., & Hong, X. (2019). Impact of climate variability on blue and green water flows in the Erhai Lake Basin of Southwest China. Water, 11(3), 424.

    Article  Google Scholar 

  • Zhao, P., Lü, H., Yang, H., Wang, W., & Fu, G. (2019). Impacts of climate change on hydrological droughts at basin scale: a case study of the Weihe River Basin, China. Quaternary International, 513, 37–46.

    Article  Google Scholar 

  • Zhao, A., Zhu, X., Liu, X., Pan, Y., & Zuo, D. (2016). Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China. Catena, 137, 318–327.

    Article  Google Scholar 

  • Zuo, D., Xu, Z., Peng, D., Song, J., Cheng, L., Wei, S., Abbaspour, C., Karim, & Yang, H. (2014). Simulating spatiotemporal variability of blue and green water resources availability with uncertainty analysis. Hydrological Processes, 29(8), 1942–1955.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbarayan Saravanan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Saravanan, S. Impact of climate change on hydrology components using CORDEX South Asia climate model in Wunna, Bharathpuzha, and Mahanadi, India. Environ Monit Assess 192, 678 (2020). https://doi.org/10.1007/s10661-020-08637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08637-z

Keywords

Navigation