Skip to main content

Advertisement

Log in

A Review on Laboratory Studies and Field Measurements of Atmospheric Organic Aerosol Hygroscopicity and Its Parameterization Based on Oxidation Levels

  • Air Pollution (H Zhang and Y Sun, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The study of organic aerosol hygroscopic growth and cloud droplet activation is crucial for accurately quantifying their climate and environmental impacts. However, the physical mechanisms behind organic aerosol hygroscopicity variations are not well understood. In this review, we summarized laboratory and field measurements of the organic aerosol hygroscopicity parameter κOA, discussed the physical understanding of why κOA was generally positively correlated with organic aerosol oxidation level, summarized proposed κOA parameterization schemes, and examined possible explanations for the marked differences among these parameterization schemes.

Recent Findings

Recent findings challenged the general cognition that cloud condensation nuclei (CCN) activity of secondary organic aerosol depended largely on solubility, showing it to be mainly controlled by molecular weight, yet the universality of this finding needs to be further examined. It was found that carbon chain length and functional groups had significant impacts on κOA and additional parameters other than O/C ratio need to be included when parameterizing κOA of multifunctional compounds, which is typically the case for ambient atmospheric aerosols. Additionally, laboratory results of secondary organic aerosol suggest that κOA might be highly RH-dependent under sub-saturated conditions, especially for biogenic secondary organic aerosols.

Summary

This review summarized laboratory and field measurements of atmospheric organic aerosol hygroscopicity parameter κOA and its parameterization schemes. The results demonstrate that representing κOA with a single oxidation level parameter still bears large uncertainty, and physical mechanisms associated with hygroscopic growth and cloud activation processes of organic aerosol still remain unresolved and need further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aiken AC, DeCarlo PF, Kroll JH, Worsnop DR, Huffman JA, Docherty KS, et al. O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ Sci Technol. 2008;42(12):4478–85. https://doi.org/10.1021/es703009q.

    Article  CAS  Google Scholar 

  2. Alfarra MR, Good N, Wyche KP, Hamilton JF, Monks PS, Lewis AC, et al. Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs. Atmos Chem Phys. 2013;13(23):11769–89. https://doi.org/10.5194/acp-13-11769-2013.

    Article  CAS  Google Scholar 

  3. Asa-Awuku A, Nenes A, Gao S, Flagan RC, Seinfeld JH. Water-soluble SOA from alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity. Atmos Chem Phys. 2010;10(4):1585–97. https://doi.org/10.5194/acp-10-1585-2010.

    Article  CAS  Google Scholar 

  4. Atkinson DB, Radney JG, Lum J, Kolesar KR, Cziczo DJ, Pekour MS, et al. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign. Atmos Chem Phys. 2015;15(8):4045–61. https://doi.org/10.5194/acp-15-4045-2015.

    Article  CAS  Google Scholar 

  5. Bian YX, Zhao CS, Ma N, Chen J, Xu WY. A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain. Atmos Chem Phys. 2014;14(12):6417–26. https://doi.org/10.5194/acp-14-6417-2014.

    Article  CAS  Google Scholar 

  6. Cain KP, Pandis SN. A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions. Atmos Meas Tech. 2017;10(12):4865–76. https://doi.org/10.5194/amt-10-4865-2017.

    Article  CAS  Google Scholar 

  7. Canagaratna MR, Jimenez JL, Kroll JH, Chen Q, Kessler SH, Massoli P, et al. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmos Chem Phys. 2015;15(1):253–72. https://doi.org/10.5194/acp-15-253-2015.

    Article  CAS  Google Scholar 

  8. Cappa CD, Che DL, Kessler SH, Kroll JH, Wilson KR. Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. J Geophys Res-Atmos. 2011;116(D15). https://doi.org/10.1029/2011JD015918.

  9. Cerully KM, Bougiatioti A, Hite JR Jr, Guo H, Xu L, Ng NL, et al. On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States. Atmos Chem Phys. 2015;15(15):8679–94. https://doi.org/10.5194/acp-15-8679-2015.

    Article  CAS  Google Scholar 

  10. Chang RYW, Slowik JG, Shantz NC, Vlasenko A, Liggio J, Sjostedt SJ, et al. The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation. Atmos Chem Phys. 2010;10(11):5047–64. https://doi.org/10.5194/acp-10-5047-2010.

    Article  CAS  Google Scholar 

  11. Chen J, Budisulistiorini SH, Itoh M, Lee WC, Miyakawa T, Komazaki Y, et al. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter. Atmos Chem Phys. 2017;17(18):11591–604. https://doi.org/10.5194/acp-17-11591-2017.

    Article  CAS  Google Scholar 

  12. Chen J, Lee W-C, Itoh M, Kuwata M. A significant portion of water-soluble organic matter in fresh biomass burning particles does not contribute to hygroscopic growth: an application of polarity segregation by 1-Octanol–water partitioning method. Environ Sci Technol. 2019;53(17):10034–42. https://doi.org/10.1021/acs.est.9b01696.

    Article  CAS  Google Scholar 

  13. Chen J, Zhao CS, Ma N, Liu PF, Göbel T, Hallbauer E, et al. A parameterization of low visibilities for hazy days in the North China Plain. Atmos Chem Phys. 2012;12(11):4935–50. https://doi.org/10.5194/acp-12-4935-2012.

    Article  CAS  Google Scholar 

  14. Chen X, Chu Y, Lee AKY, Gen M, Kasthuriarachchi NY, Chan CK, et al. Relative humidity history affects hygroscopicity of mixed particles of glyoxal and reduced nitrogenous species. Environ Sci Technol. 2020;54:7097–106. https://doi.org/10.1021/acs.est.0c00680.

    Article  CAS  Google Scholar 

  15. Cheung HHY, Yeung MC, Li YJ, Lee BP, Chan CK. Relative humidity-dependent HTDMA measurements of ambient aerosols at the HKUST supersite in Hong Kong, China. Aerosol Sci Technol. 2015;49(8):643–54. https://doi.org/10.1080/02786826.2015.1058482.

    Article  CAS  Google Scholar 

  16. Curci G, Alyuz U, Barò R, Bianconi R, Bieser J, Christensen JH, et al. Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions. Atmos Chem Phys. 2019;19(1):181–204. https://doi.org/10.5194/acp-19-181-2019.

    Article  CAS  Google Scholar 

  17. Deng Y, Kagami S, Ogawa S, Kawana K, Nakayama T, Kubodera R, et al. Hygroscopicity of organic aerosols and their contributions to CCN concentrations over a midlatitude forest in Japan. J Geophys Res-Atmos. 2018;123(17):9703–23. https://doi.org/10.1029/2017jd027292.

    Article  Google Scholar 

  18. Donahue NM, Epstein SA, Pandis SN, Robinson AL. A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics. Atmos Chem Phys. 2011;11(7):3303–18. https://doi.org/10.5194/acp-11-3303-2011.

    Article  CAS  Google Scholar 

  19. Donahue NM, Kroll JH, Pandis SN, Robinson AL. A two-dimensional volatility basis set – part 2: diagnostics of organic-aerosol evolution. Atmos Chem Phys. 2012;12(2):615–34. https://doi.org/10.5194/acp-12-615-2012.

    Article  CAS  Google Scholar 

  20. Duplissy J, DeCarlo PF, Dommen J, Alfarra MR, Metzger A, Barmpadimos I, et al. Relating hygroscopicity and composition of organic aerosol particulate matter. Atmos Chem Phys. 2011;11(3):1155–65. https://doi.org/10.5194/acp-11-1155-2011.

    Article  CAS  Google Scholar 

  21. Dusek U, Frank GP, Hildebrandt L, Curtius J, Schneider J, Walter S, et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science. 2006;312(5778):1375–8. https://doi.org/10.1126/science.1125261.

    Article  CAS  Google Scholar 

  22. Engelhart GJ, Asa-Awuku A, Nenes A, Pandis SN. CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol. Atmos Chem Phys. 2008;8(14):3937–49. https://doi.org/10.5194/acp-8-3937-2008.

    Article  CAS  Google Scholar 

  23. Engelhart GJ, Moore RH, Nenes A, Pandis SN. Cloud condensation nuclei activity of isoprene secondary organic aerosol. J Geophys Res Atmos. 2011;116(D2). https://doi.org/10.1029/2010jd014706.

  24. Ervens B, Turpin BJ, Weber RJ. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos Chem Phys. 2011;11(21):11069–102. https://doi.org/10.5194/acp-11-11069-2011.

    Article  CAS  Google Scholar 

  25. Frosch M, Bilde M, DeCarlo PF, Jurányi Z, Tritscher T, Dommen J, et al. Relating cloud condensation nuclei activity and oxidation level of α-pinene secondary organic aerosols. J Geophys Res-Atmos. 2011;116(D22). https://doi.org/10.1029/2011jd016401.

  26. George IJ, Chang RYW, Danov V, Vlasenko A, Abbatt JPD. Modification of cloud condensation nucleus activity of organic aerosols by hydroxyl radical heterogeneous oxidation. Atmos Environ. 2009;43(32):5038–45. https://doi.org/10.1016/j.atmosenv.2009.06.043.

    Article  CAS  Google Scholar 

  27. Graber ER, Rudich Y. Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmos Chem Phys. 2006;6(3):729–53. https://doi.org/10.5194/acp-6-729-2006.

    Article  CAS  Google Scholar 

  28. Gunthe SS, King SM, Rose D, Chen Q, Roldin P, Farmer DK, et al. Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmos Chem Phys. 2009;9(19):7551–75. https://doi.org/10.5194/acp-9-7551-2009.

    Article  CAS  Google Scholar 

  29. Gunthe SS, Rose D, Su H, Garland RM, Achtert P, Nowak A, et al. Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmos Chem Phys. 2011;11(21):11023–39. https://doi.org/10.5194/acp-11-11023-2011.

    Article  CAS  Google Scholar 

  30. Gysel M, Crosier J, Topping DO, Whitehead JD, Bower KN, Cubison MJ, et al. Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2. Atmos Chem Phys. 2007;7(24):6131–44. https://doi.org/10.5194/acp-7-6131-2007.

    Article  CAS  Google Scholar 

  31. Hong J, Xu H, Tan H, Yin C, Hao L, Li F, et al. Mixing state and particle hygroscopicity of organic-dominated aerosols over the Pearl River Delta region in China. Atmos Chem Phys. 2018;18(19):14079–94. https://doi.org/10.5194/acp-18-14079-2018.

    Article  CAS  Google Scholar 

  32. Huang W, Saathoff H, Shen X, Ramisetty R, Leisner T, Mohr C. Chemical characterization of highly functionalized organonitrates contributing to night-time organic aerosol mass loadings and particle growth. Environ Sci Technol. 2019;53(3):1165–74. https://doi.org/10.1021/acs.est.8b05826.

    Article  CAS  Google Scholar 

  33. IPCC. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. 2013.

  34. Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, Kroll JH, et al. Evolution of organic aerosols in the atmosphere. Science. 2009;326(5959):1525–9. https://doi.org/10.1126/science.1180353.

    Article  CAS  Google Scholar 

  35. Jin X, Wang Y, Li Z, Zhang F, Xu W, Sun Y, et al. Significant contribution of organics to aerosol liquid water content in winter in Beijing, China. Atmos Chem Phys. 2020;20(2):901–14. https://doi.org/10.5194/acp-20-901-2020.

    Article  CAS  Google Scholar 

  36. Kaiser J, Skog KM, Baumann K, Bertman SB, Brown SB, Brune WH, et al. Speciation of OH reactivity above the canopy of an isoprene-dominated forest. Atmos Chem Phys. 2016;16(14):9349–59. https://doi.org/10.5194/acp-16-9349-2016.

    Article  CAS  Google Scholar 

  37. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, et al. Organic aerosol and global climate modelling: a review. Atmos Chem Phys. 2005;5(4):1053–123. https://doi.org/10.5194/acp-5-1053-2005.

    Article  CAS  Google Scholar 

  38. Kawana K, Nakayama T, Mochida M. Hygroscopicity and CCN activity of atmospheric aerosol particles and their relation to organics: characteristics of urban aerosols in Nagoya, Japan. J Geophys Res-Atmos. 2016;121(8):4100–21. https://doi.org/10.1002/2015JD023213.

    Article  Google Scholar 

  39. Kostenidou E, Karnezi E, Hite JR Jr, Bougiatioti A, Cerully K, Xu L, et al. Organic aerosol in the summertime southeastern United States: components and their link to volatility distribution, oxidation state and hygroscopicity. Atmos Chem Phys. 2018;18(8):5799–819. https://doi.org/10.5194/acp-18-5799-2018.

    Article  CAS  Google Scholar 

  40. Kreidenweis SM, Asa-Awuku A. 5.13 - Aerosol hygroscopicity: particle water content and its role in atmospheric processes. In: Holland HD, Turekian KK, editors. Treatise on Geochemistry. Second ed. Oxford: Elsevier; 2014. p. 331–61.

    Chapter  Google Scholar 

  41. Kroll JH, Donahue NM, Jimenez JL, Kessler SH, Canagaratna MR, Wilson KR, et al. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat Chem. 2011;3(2):133–9. https://doi.org/10.1038/nchem.948.

    Article  CAS  Google Scholar 

  42. Kuang Y, He Y, Xu W, Yuan B, Zhang G, Ma Z, et al. Photochemical aqueous-phase reactions induce rapid daytime formation of oxygenated organic aerosol on the North China Plain. Environ Sci Technol. 2020a;54:3849–60. https://doi.org/10.1021/acs.est.9b06836.

    Article  CAS  Google Scholar 

  43. Kuang Y, He Y, Xu W, Zhao P, Cheng Y, Zhao G, et al. Distinct diurnal variation in organic aerosol hygroscopicity and its relationship with oxygenated organic aerosol. Atmos Chem Phys. 2020b;20(2):865–80. https://doi.org/10.5194/acp-20-865-2020.

    Article  CAS  Google Scholar 

  44. Kuang Y, Zhao CS, Ma N, Liu HJ, Bian YX, Tao JC, et al. Deliquescent phenomena of ambient aerosols on the North China Plain. Geophys Res Lett. 2016a;43(16):8744–50. https://doi.org/10.1002/2016gl070273.

    Article  Google Scholar 

  45. Kuang Y, Zhao CS, Ma N, Liu HJ, Bian YX, Tao JC et al. Deliquescent phenomena of ambient aerosols on the North China Plain. Geophys Res Lett. 2016b:n/a-n/a. doi:https://doi.org/10.1002/2016GL070273.

  46. Kuang Y, Zhao CS, Tao JC, Bian YX, Ma N. Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain. Atmos Environ. 2016c;147:224–33. https://doi.org/10.1016/j.atmosenv.2016.10.013.

    Article  CAS  Google Scholar 

  47. Kuang Y, Zhao CS, Zhao G, Tao JC, Xu W, Ma N, et al. A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system. Atmos Meas Tech. 2018;11(5):2967–82. https://doi.org/10.5194/amt-11-2967-2018.

    Article  CAS  Google Scholar 

  48. Kuwata M, Shao W, Lebouteiller R, Martin ST. Classifying organic materials by oxygen-to-carbon elemental ratio to predict the activation regime of cloud condensation nuclei (CCN). Atmos Chem Phys. 2013;13(10):5309–24. https://doi.org/10.5194/acp-13-5309-2013.

    Article  Google Scholar 

  49. Kuwata M, Zorn SR, Martin ST. Using elemental ratios to predict the density of organic material composed of carbon, hydrogen, and oxygen. Environ Sci Technol. 2012;46(2):787–94. https://doi.org/10.1021/es202525q.

    Article  CAS  Google Scholar 

  50. Lambe AT, Onasch TB, Massoli P, Croasdale DR, Wright JP, Ahern AT, et al. Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA). Atmos Chem Phys. 2011;11(17):8913–28. https://doi.org/10.5194/acp-11-8913-2011.

    Article  CAS  Google Scholar 

  51. Lance S, Nenes A, Medina J, Smith JN. Mapping the operation of the DMT continuous flow CCN counter. Aerosol Sci Technol. 2006;40(4):242–54. https://doi.org/10.1080/02786820500543290.

    Article  CAS  Google Scholar 

  52. Lathem TL, Beyersdorf AJ, Thornhill KL, Winstead EL, Cubison MJ, Hecobian A, et al. Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008. Atmos Chem Phys. 2013;13(5):2735–56. https://doi.org/10.5194/acp-13-2735-2013.

    Article  CAS  Google Scholar 

  53. Latimer RNC, Martin RV. Interpretation of measured aerosol mass scattering efficiency over North America using a chemical transport model. Atmos Chem Phys. 2019;19(4):2635–53. https://doi.org/10.5194/acp-19-2635-2019.

    Article  CAS  Google Scholar 

  54. Levin EJT, Prenni AJ, Palm BB, Day DA, Campuzano-Jost P, Winkler PM, et al. Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado. Atmos Chem Phys. 2014;14(5):2657–67. https://doi.org/10.5194/acp-14-2657-2014.

    Article  CAS  Google Scholar 

  55. Li X, Song S, Zhou W, Hao J, Worsnop DR, Jiang J. Interactions between aerosol organic components and liquid water content during haze episodes in Beijing. Atmos Chem Phys Discuss. 2019;2019:1–19. https://doi.org/10.5194/acp-2019-316.

    Article  Google Scholar 

  56. Liu BYH, Pui DYH, Whitby KT, Kittelson DB, Kousaka Y, McKenzie RL. The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols. Atmos Environ (1967). 1978;12(1):99–104. https://doi.org/10.1016/0004-6981(78)90192-0.

    Article  CAS  Google Scholar 

  57. Liu P, Song M, Zhao T, Gunthe SS, Ham S, He Y, et al. Resolving the mechanisms of hygroscopic growth and cloud condensation nuclei activity for organic particulate matter. Nat Commun. 2018;9(1):4076. https://doi.org/10.1038/s41467-018-06622-2.

    Article  CAS  Google Scholar 

  58. Liu X, Wang J. How important is organic aerosol hygroscopicity to aerosol indirect forcing? Environ Res Lett. 2010;5(4):044010. https://doi.org/10.1088/1748-9326/5/4/044010.

    Article  CAS  Google Scholar 

  59. Markelj J, Madronich S, Pompe M. Modeling of hygroscopicity parameter kappa of organic aerosols using quantitative structure-property relationships. J Atmos Chem. 2016;74(3):357–76. https://doi.org/10.1007/s10874-016-9347-3.

    Article  CAS  Google Scholar 

  60. Marsh A, Miles REH, Rovelli G, Cowling AG, Nandy L, Dutcher CS, et al. Influence of organic compound functionality on aerosol hygroscopicity: dicarboxylic acids, alkyl-substituents, sugars and amino acids. Atmos Chem Phys. 2017;17(9):5583–99. https://doi.org/10.5194/acp-17-5583-2017.

    Article  CAS  Google Scholar 

  61. Massoli P, Lambe AT, Ahern AT, Williams LR, Ehn M, Mikkilä J, et al. Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles. Geophys Res Lett. 2010;37(24). https://doi.org/10.1029/2010gl045258.

  62. McNeill VF. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols. Environ Sci Technol. 2015;49(3):1237–44. https://doi.org/10.1021/es5043707.

    Article  CAS  Google Scholar 

  63. Mei F, Setyan A, Zhang Q, Wang J. CCN activity of organic aerosols observed downwind of urban emissions during CARES. Atmos Chem Phys. 2013;13(24):12155–69. https://doi.org/10.5194/acp-13-12155-2013.

    Article  CAS  Google Scholar 

  64. Moore RH, Bahreini R, Brock CA, Froyd KD, Cozic J, Holloway JS, et al. Hygroscopicity and composition of Alaskan Arctic CCN during April 2008. Atmos Chem Phys. 2011;11(22):11807–25. https://doi.org/10.5194/acp-11-11807-2011.

    Article  CAS  Google Scholar 

  65. Nakao S. Why would apparent κ linearly change with O/C? Assessing the role of volatility, solubility, and surface activity of organic aerosols. Aerosol Sci Technol. 2017;51(12):1377–88. https://doi.org/10.1080/02786826.2017.1352082.

    Article  CAS  Google Scholar 

  66. Nguyen TKV, Zhang Q, Jimenez JL, Pike M, Carlton AG. Liquid water: ubiquitous contributor to aerosol mass. Environ Sci Technol Lett. 2016;3(7):257–63. https://doi.org/10.1021/acs.estlett.6b00167.

    Article  CAS  Google Scholar 

  67. Ovadnevaite J, Zuend A, Laaksonen A, Sanchez KJ, Roberts G, Ceburnis D et al. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature. 2017;advance online publication. doi:https://doi.org/10.1038/nature22806http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature22806.html#supplementary-information.

  68. Pajunoja A, Lambe AT, Hakala J, Rastak N, Cummings MJ, Brogan JF, et al. Adsorptive uptake of water by semisolid secondary organic aerosols. Geophys Res Lett. 2015;42(8):3063–8. https://doi.org/10.1002/2015GL063142.

    Article  CAS  Google Scholar 

  69. Petters MD, Carrico CM, Kreidenweis SM, Prenni AJ, DeMott PJ, Collett JL Jr, et al. Cloud condensation nucleation activity of biomass burning aerosol. J Geophys Res-Atmos. 2009;114(D22). https://doi.org/10.1029/2009JD012353.

  70. Petters MD, Kreidenweis SM. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys. 2007;7(8):1961–71.

    Article  CAS  Google Scholar 

  71. Petters MD, Kreidenweis SM. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity - part 3: including surfactant partitioning. Atmos Chem Phys. 2013;13(2):1081–91. https://doi.org/10.5194/acp-13-1081-2013.

    Article  CAS  Google Scholar 

  72. Petters MD, Kreidenweis SM, Ziemann PJ. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods. Geosci Model Dev. 2016;9(1):111–24. https://doi.org/10.5194/gmd-9-111-2016.

    Article  CAS  Google Scholar 

  73. Petters SS, Pagonis D, Claflin MS, Levin EJT, Petters MD, Ziemann PJ, et al. Hygroscopicity of organic compounds as a function of carbon chain length and carboxyl, hydroperoxy, and carbonyl functional groups. J Phys Chem A. 2017;121(27):5164–74. https://doi.org/10.1021/acs.jpca.7b04114.

    Article  CAS  Google Scholar 

  74. Prenni AJ, Petters MD, Kreidenweis SM, DeMott PJ, Ziemann PJ, et al. J Geophys Res-Atmos. 2007;112(D10). https://doi.org/10.1029/2006JD007963.

  75. Psichoudaki M, Pandis SN. Atmospheric aerosol water-soluble organic carbon measurement: a theoretical analysis. Environ Sci Technol. 2013;47(17):9791–8. https://doi.org/10.1021/es402270y.

    Article  CAS  Google Scholar 

  76. Rastak N, Pajunoja A, Acosta Navarro JC, Ma J, Song M, Partridge DG, et al. Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate. Geophys Res Lett. 2017;44(10):5167–77. https://doi.org/10.1002/2017gl073056.

    Article  CAS  Google Scholar 

  77. Rickards AMJ, Miles REH, Davies JF, Marshall FH, Reid JP. Measurements of the sensitivity of aerosol hygroscopicity and the κ parameter to the O/C ratio. J Phys Chem A. 2013;117(51):14120–31. https://doi.org/10.1021/jp407991n.

    Article  CAS  Google Scholar 

  78. Riipinen I, Rastak N, Pandis SN. Connecting the solubility and CCN activation of complex organic aerosols: a theoretical study using solubility distributions. Atmos Chem Phys. 2015;15(11):6305–22. https://doi.org/10.5194/acp-15-6305-2015.

    Article  CAS  Google Scholar 

  79. Rose D, Nowak A, Achtert P, Wiedensohler A, Hu M, Shao M, et al. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – part 1: size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity. Atmos Chem Phys. 2010;10(7):3365–83. https://doi.org/10.5194/acp-10-3365-2010.

    Article  Google Scholar 

  80. Ruehl CR, Davies JF, Wilson KR. An interfacial mechanism for cloud droplet formation on organic aerosols. Science. 2016;351(6280):1447–50. https://doi.org/10.1126/science.aad4889.

    Article  CAS  Google Scholar 

  81. Saha PK, Khlystov A, Yahya K, Zhang Y, Xu L, Ng NL, et al. Quantifying the volatility of organic aerosol in the southeastern US. Atmos Chem Phys. 2017;17(1):501–20. https://doi.org/10.5194/acp-17-501-2017.

    Article  CAS  Google Scholar 

  82. Saukko E, Zorn S, Kuwata M, Keskinen J, Virtanen A. Phase state and deliquescence hysteresis of ammonium-sulfate-seeded secondary organic aerosol. Aerosol Sci Technol. 2015;49(7):531–7. https://doi.org/10.1080/02786826.2015.1050085.

    Article  CAS  Google Scholar 

  83. Saxen P. Organics alter hygroscopic behavior of atmospheric particles. J Geophys Res-Atmos. 1995;100(D9):18755–70. https://doi.org/10.1029/95JD01835.

    Article  Google Scholar 

  84. Shiraiwa M, Li Y, Tsimpidi AP, Karydis VA, Berkemeier T, Pandis SN, et al. Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat Commun. 2017;8:15002. https://doi.org/10.1038/ncomms15002.

    Article  Google Scholar 

  85. Shrivastava M, Cappa CD, Fan J, Goldstein AH, Guenther AB, Jimenez JL, et al. Recent advances in understanding secondary organic aerosol: implications for global climate forcing. Rev Geophys. 2017;55(2):509–59. https://doi.org/10.1002/2016rg000540.

    Article  Google Scholar 

  86. Song S, Gao M, Xu W, Sun Y, Worsnop DR, Jayne JT, et al. Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. Atmos Chem Phys. 2019;19(2):1357–71. https://doi.org/10.5194/acp-19-1357-2019.

    Article  CAS  Google Scholar 

  87. Stark H, Yatavelli RLN, Thompson SL, Kang H, Krechmer JE, Kimmel JR, et al. Impact of thermal decomposition on thermal desorption instruments: advantage of thermogram analysis for quantifying volatility distributions of organic species. Environ Sci Technol. 2017;51(15):8491–500. https://doi.org/10.1021/acs.est.7b00160.

    Article  CAS  Google Scholar 

  88. Suda SR, Petters MD, Matsunaga A, Sullivan RC, Ziemann PJ, Kreidenweis SM. Hygroscopicity frequency distributions of secondary organic aerosols. J Geophys Res-Atmos. 2012;117(D4):n/a. https://doi.org/10.1029/2011jd016823.

    Article  Google Scholar 

  89. Suda SR, Petters MD, Yeh GK, Strollo C, Matsunaga A, Faulhaber A, et al. Influence of functional groups on organic aerosol cloud condensation nucleus activity. Environ Sci Technol. 2014;48(17):10182–90. https://doi.org/10.1021/es502147y.

    Article  CAS  Google Scholar 

  90. Sun J, Liu L, Xu L, Wang Y, Wu Z, Hu M, et al. Key role of nitrate in phase transitions of urban particles: implications of important reactive surfaces for secondary aerosol formation. J Geophys Res-Atmos. 2018;123(2):1234–43. https://doi.org/10.1002/2017JD027264.

    Article  CAS  Google Scholar 

  91. Sun YL, Zhang Q, Schwab JJ, Yang T, Ng NL, Demerjian KL. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements. Atmos Chem Phys. 2012;12(18):8537–51. https://doi.org/10.5194/acp-12-8537-2012.

    Article  CAS  Google Scholar 

  92. Tang M, Chan CK, Li YJ, Su H, Ma Q, Wu Z, et al. A review of experimental techniques for aerosol hygroscopicity studies. Atmos Chem Phys. 2019;19(19):12631–86. https://doi.org/10.5194/acp-19-12631-2019.

    Article  CAS  Google Scholar 

  93. Tao J, Kuang Y, Ma N, Zheng Y, Wiedensohler A, Zhao C. An improved parameterization scheme for size-resolved particle activation ratio and its application on comparison study of particle hygroscopicity measurements between HTDMA and DMA-CCNC. Atmos Environ. 2020;226:117403. https://doi.org/10.1016/j.atmosenv.2020.117403.

    Article  CAS  Google Scholar 

  94. Thalman R, de Sá SS, Palm BB, Barbosa HMJ, Pöhlker ML, Alexander ML, et al. CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions. Atmos Chem Phys. 2017;17(19):11779–801. https://doi.org/10.5194/acp-17-11779-2017.

    Article  CAS  Google Scholar 

  95. Twomey S. The influence of pollution on the shortwave albedo of clouds. J Atmos Sci. 1977;34(7):1149–52. https://doi.org/10.1175/1520-0469(1977)034<1149:tiopot>2.0.co;2.

    Article  Google Scholar 

  96. Vu TV, Delgado-Saborit JM, Harrison RM. A review of hygroscopic growth factors of submicron aerosols from different sources and its implication for calculation of lung deposition efficiency of ambient aerosols. Air Qual Atmos Health. 2015;8(5):429–40. https://doi.org/10.1007/s11869-015-0365-0.

    Article  CAS  Google Scholar 

  97. Wang J, Shilling JE, Liu J, Zelenyuk A, Bell DM, Petters MD, et al. Cloud droplet activation of secondary organic aerosol is mainly controlled by molecular weight, not water solubility. Atmos Chem Phys. 2019;19(2):941–54. https://doi.org/10.5194/acp-19-941-2019.

    Article  CAS  Google Scholar 

  98. Wu ZJ, Poulain L, Henning S, Dieckmann K, Birmili W, Merkel M, et al. Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign. Atmos Chem Phys. 2013;13(16):7983–96. https://doi.org/10.5194/acp-13-7983-2013.

    Article  CAS  Google Scholar 

  99. Wu ZJ, Zheng J, Shang DJ, Du ZF, Wu YS, Zeng LM, et al. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime. Atmos Chem Phys. 2016;16(2):1123–38. https://doi.org/10.5194/acp-16-1123-2016.

    Article  CAS  Google Scholar 

  100. Xu W, Kuang Y, Bian Y, Liu L, Li F, Wang Y, et al. Current challenges in visibility improvement in southern China. Environ Sci Technol Lett. 2020;7:395–401. https://doi.org/10.1021/acs.estlett.0c00274.

    Article  CAS  Google Scholar 

  101. Yeung MC, Lee BP, Li YJ, Chan CK. Simultaneous HTDMA and HR-ToF-AMS measurements at the HKUST Supersite in Hong Kong in 2011. J Geophys Res-Atmos. 2014;119(16):9864–83. https://doi.org/10.1002/2013JD021146.

    Article  Google Scholar 

  102. Zhang Q, Jimenez JL, Canagaratna MR, Allan JD, Coe H, Ulbrich I, et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys Res Lett. 2007;34(13):n/a. https://doi.org/10.1029/2007GL029979.

    Article  CAS  Google Scholar 

  103. Zhang R, Wang G, Guo S, Zamora ML, Ying Q, Lin Y, et al. Formation of urban fine particulate matter. Chem Rev. 2015;115(10):3803–55. https://doi.org/10.1021/acs.chemrev.5b00067.

    Article  CAS  Google Scholar 

  104. Zhao B, Wang S, Donahue NM, Jathar SH, Huang X, Wu W, et al. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China. Sci Rep. 2016;6(1):28815. https://doi.org/10.1038/srep28815.

    Article  CAS  Google Scholar 

  105. Zhao C, Tie X, Lin Y. A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. Geophys Res Lett. 2006;33(11):L11814. https://doi.org/10.1029/2006GL025959.

    Article  Google Scholar 

  106. Zhao C, Yu Y, Kuang Y, Tao J, Zhao G. Recent progress of aerosol light-scattering enhancement factor studies in China. Adv Atmos Sci. 2019;36(9):1015–26. https://doi.org/10.1007/s00376-019-8248-1.

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (41805109), Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province (Grant No.2019B121205004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Kuang.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Air Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, Y., Xu, W., Tao, J. et al. A Review on Laboratory Studies and Field Measurements of Atmospheric Organic Aerosol Hygroscopicity and Its Parameterization Based on Oxidation Levels. Curr Pollution Rep 6, 410–424 (2020). https://doi.org/10.1007/s40726-020-00164-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-020-00164-2

Keywords

Navigation