Skip to main content
Log in

Harnack Inequality for the Elliptic p(x)-Laplacian with a Three-Phase Exponent p(x)

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

For an elliptic \(p(x)\)-Laplacian with a piecewise constant three-phase exponent \(p\) in the plane with three phases joining at a point, a Harnack inequality is proved and the Hölder continuity of the solution is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. V. V. Zhikov, “Questions of convergence, duality, and averaging for functionals of the calculus of variations,” Math. USSR Izv. 23 (2), 243–276 (1984).

    Article  Google Scholar 

  2. V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory,” Math. USSR Izv. 29 (1), 33–66 (1987).

    Article  Google Scholar 

  3. D. E. Edmunds and J. Rakosnik, “Density of smooth functions in \({{W}^{{k,p}}}(\Omega )\),” Proc. R. Soc. London Ser. A 437, 229–236 (1992).

    Article  MathSciNet  Google Scholar 

  4. X. Fan, S. Wang, and D. Zhao, “Density of \({{C}^{\infty }}(\Omega )\) in \({{W}^{{1,p(x)}}}(\Omega )\) with discontinuous exponent \(p(x)\),” Math. Nachr. 279 (1–2), 142–149 (2006).

    Article  MathSciNet  Google Scholar 

  5. V. V. Zhikov, “On Lavrentiev’s phenomenon,” Russ. J. Math. Phys. 3 (2), 249–269 (1994).

    MathSciNet  MATH  Google Scholar 

  6. V. V. Zhikov, “Density of smooth functions in Sobolev–Orlicz spaces,” J. Math. Sci. 132 (3), 285–294 (2006).

    Article  MathSciNet  Google Scholar 

  7. V. V. Zhikov, “On variational problems and nonlinear elliptic equations with nonstandard growth conditions,” Probl. Mat. Anal. 54, 23–112 (2011).

    MathSciNet  Google Scholar 

  8. V. Zhikov, “On variational problems and nonlinear elliptic equations with nonstandard growth conditions,” J. Math. Sci. 173 (5), 463–570 (2011).

    MathSciNet  MATH  Google Scholar 

  9. V. V. Zhikov, Variational Problems and Nonlinear Elliptic Inequalities with Nonstandard Growth Conditions (Tamara Rozhkovskaya, Novosibirsk, 2017) [in Russian].

    Google Scholar 

  10. L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Vol. 2017 (Springer, Berlin, 2011).

  11. D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis (Birkhäuser-Springer, Basel, 2013).

    Book  Google Scholar 

  12. V. Kokilashvili, A. Meskhii, H. Rafeiro, and S. Samko, Integral Operators in Non-Standard Function Spaces, Vol. 1: Variable Exponent Lebesgue and Amalgam Spaces, Vol. 2: Variable Exponent Hölder, Morrey–Campanato, and Grand Spaces (Birkhäuser–Springer, Basel, 2016).

  13. Yu. A. Alkhutov, “The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition,” Differ. Equations 33 (12), 1653–1663 (1997).

    MathSciNet  MATH  Google Scholar 

  14. O. V. Krasheninnikova, “Continuity at a point for solutions to elliptic equations with a nonstandard growth condition,” Proc. Steklov Inst. Math. 236, 193–200 (2002).

    MathSciNet  MATH  Google Scholar 

  15. Yu. A. Alkhutov, “Hölder continuity of p(x)-harmonic functions,” Sb. Math. 196 (2), 147–171 (2005).

    Article  MathSciNet  Google Scholar 

  16. Yu. A. Alkhutov and O. V. Krasheninnikova, “On the continuity of solutions to elliptic equations with variable order of nonlinearity,” Proc. Steklov Inst. Math. 261, 1–10 (2008).

    Article  MathSciNet  Google Scholar 

  17. E. Acerbi and N. Fusco, “A transmission problem in the calculus of variations,” Calc. Var. Partial Differ. Equations 2 (1), 1–16 (1994).

    Article  MathSciNet  Google Scholar 

  18. Yu. A. Alkhutov and M. D. Surnachev, “On a Harnack inequality for the elliptic (p, q)-Laplacian,” Dokl. Math. 94 (2), 569–573 (2016).

    Article  MathSciNet  Google Scholar 

  19. Yu. A. Alkhutov and M. D. Surnachev, “A Harnack inequality for a transmission problem with p(x)-Laplacian,” Appl. Anal. 98 (1–2), 332–344 (2019).

    Article  MathSciNet  Google Scholar 

  20. Yu. A. Alkhutov and M. D. Surnachev, “Harnack’s inequality for the p(x)-Laplacian with a two-phase exponent p(x),” J. Math. Sci. 244 (2), 116–147 (2020).

    Article  MathSciNet  Google Scholar 

  21. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer-Verlag, Berlin, 1983).

    Book  Google Scholar 

  22. J. Serrin, “Local behavior of solutions of quasi-linear equations,” Acta Math. 111, 247–302 (1964).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-01-00184.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Alkhutov or M. D. Surnachev.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhutov, Y.A., Surnachev, M.D. Harnack Inequality for the Elliptic p(x)-Laplacian with a Three-Phase Exponent p(x). Comput. Math. and Math. Phys. 60, 1284–1293 (2020). https://doi.org/10.1134/S0965542520080023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520080023

Keywords:

Navigation