Skip to main content
Log in

Vertex Algebras for S-duality

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We define new deformable families of vertex operator algebras \(\mathfrak {A}[\mathfrak {g}, \Psi , \sigma ]\) associated to a large set of S-duality operations in four-dimensional supersymmetric gauge theory. They are defined as algebras of protected operators for two-dimensional supersymmetric junctions which interpolate between a Dirichlet boundary condition and its S-duality image. The \(\mathfrak {A}[\mathfrak {g}, \Psi , \sigma ]\) vertex operator algebras are equipped with two \(\mathfrak {g}\) affine vertex subalgebras whose levels are related by the S-duality operation. They compose accordingly under a natural convolution operation and can be used to define an action of the S-duality operations on a certain space of vertex operator algebras equipped with a \(\mathfrak {g}\) affine vertex subalgebra. We give a self-contained definition of the S-duality action on that space of vertex operator algebras. The space of conformal blocks (in the derived sense, i.e. chiral homology) for \(\mathfrak {A}[\mathfrak {g}, \Psi , \sigma ]\) is expected to play an important role in a broad generalization of the quantum Geometric Langlands program. Namely, we expect the S-duality action on vertex operator algebras to extend to an action on the corresponding spaces of conformal blocks. This action should coincide with and generalize the usual quantum Geometric Langlands correspondence. The strategy we use to define the \(\mathfrak {A}[\mathfrak {g}, \Psi , \sigma ]\) vertex operator algebras is of broader applicability and leads to many new results and conjectures about deformable families of vertex operator algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The global form of the gauge group does not affect directly the algebra of local operators but will select a specific class of modules for the VOA.

  2. This setup has obvious generalizations involving two-dimensional junctions of multiple topological interfaces.

  3. Or even webs of junctions between topological interfaces.

  4. This statement is true up to important fermion number shifts, which are the reason our construction produces super-algebras rather than algebras, and up to restricting the weights of the representations in a manner associated to the action of Langlands duality on the global form of the group.

  5. This actually makes the second map in the above list redundant, thanks to the coset description of \(W_\Psi [\mathfrak {g}]\).

  6. The non-critically-shifted level would be \(\Psi - n_G-h^\vee _G\).

  7. Up to important fermion number shifts due to the DS reduction.

  8. Notice that if \({}^L G = G\) then \(L_1[G]\) has only the vacuum module and is a good chiral CFT. For more general G it is a relative theory and one may worry why is it OK to use it as extra junction degrees of freedom. This can be explained by a careful analysis of how the global form of the group changes under S-duality, leading to subtle discrete anomalies which are cancelled by the coupling to \(L_1[G]\). We will not do so here.

  9. A very careful reader may wonder about the appearance of fermionic degrees of freedom at junctions in a bosonic theory. Some questions may also be raised about subtle interplay of fermionic and bosonic notions of mutual locality of modules in the coset. Such a reader is invited to explore related subtleties about the electric-magnetic duality group of Abelian gauge theories [Met15], such as the fact that the ST transformation we use here maps standard gauge connections to \(\hbox {Spin}_{\mathbb {C}}\) gauge connections.

  10. The fact that such conformal blocks can be defined in a manner which is algebraic in the \(G_{\mathrm {out}}\) flat connection is rather non-trivial and it is intimately related to the fact that the \(G_{\mathrm {out}}\) outer automorphism symmetry is the remnant of a G Kac–Moody algebra whose level is sent to infinity.

  11. In order to understand the level shifts, recall that the critical level for U(N) is \(-N\) and the non-shifted level of the \(U(N-1)\) sub-algebra equals the non-shifted level of the U(N) Kac–Moody algebra. Hence the non-critically shifted levels are both \(\Psi -N+1\).

  12. In order to understand the level shifts, recall that the critical level for U(N|M) is \(M-N\) and hence the non-shifted level of \(U(N|N-1)_{\Psi ^{-1}}\) is \(\Psi ^{-1}-1\). The DS reduction modifies the non-shifted level of the U(N) sub-algebra from \(\Psi ^{-1}-1\) to the desired \(\Psi ^{-1}-N+1\).

  13. Recall that the VOA of \(2N+1\) fermions is a simple current extension of \(L_1(so(2N+1))\) and here this is (as usual in CFT) meant by \(L_1[SO(2N+1)]\).

References

  1. Arakawa, T., Creutzig, T., Linshaw, A.R.: Cosets of Bershadsky–Polyakov algebras and rational \(\cal{W}\)-algebras of type \(A\). Sel. Math. New Ser. 23, 2369–2395 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Arakawa, T., Creutzig, T., Linshaw, A.R.: Coset construction of principal \(W\)-algebras. Invent. Math. 218, 145–195 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Adamovic, D., Creutzig, T., Genra, N., Yang, J.: The vertex algebras \({\cal{R}}^{(p)}\) and \({\cal{V}}^{(p)}\). arXiv:2001.08048 [math.RT]

  4. Adamović, D.: A realization of certain modules for the \(N=4\) superconformal algebra and the affine Lie algebra \(A_2^{(1)}\). Transform. Groups 21(2), 299–327 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Arakawa, T., Frenkel, E.: Quantum Langlands duality of representations of \(W\)-algebras. Compos. Math. 155(12), 2235–2262 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Arakawa, Tomoyuki, Kawasetsu, Kazuya: Quasi-lisse vertex algebras and modular linear differential equations. In: Kac, V.G., Popov, V.L. (eds.) Lie Groups, Geometry, and Representation Theory, A Tribute to the Life and Work of Bertram Kostant (Progress in Mathematics), vol. 326. Birkhauser, Basel (2018)

    Google Scholar 

  7. Adamović, D., Kac, V.G., Moseneder Frajria, P., Papi, P., Perše, O.: Conformal embeddings of affine vertex algebras in minimal \(W\)-algebras I: structural results. J. Algebra 500, 117–152 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Adamović, D., Milas, A.: On the triplet vertex algebra \(W(p)\). Adv. Math. 217(6), 2664–2699 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Adamović, D., Perše, O.: Some general results on conformal embeddings of affine vertex operator algebras. Algebras Represent. Theory 16(1), 51–64 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Arakawa, T.: Vanishing of cohomology associated to quantized Drinfeld–Sokolov reduction. Int. Math. Res. Not. 2004, 730–767 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Arakawa, T.: Representation theory of \(W\)-algebras. Invent. Math. 169(2), 219–320 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Butson, D., Costello, K., Gaiotto, D.: Vertex operator algebras at the boundary of supersymmetric gauge theory (to appear) (2017)

  13. Bringmann, K., Creutzig, T., Rolen, L.: Negative index Jacobi forms and quantum modular forms. Res. Math. Sci. 1(Art. 11), 32 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Bowcock, P., Feigin, B.L., Semikhatov, A.M., Taormina, A.: Affine sl(2\(|\)1) and affine D(2\(|\)1:alpha) as vertex operator extensions of dual affine sl(2) algebras. Commun. Math. Phys. 214, 495–545 (2000)

    ADS  MATH  Google Scholar 

  15. Buican, M., Nishinaka, T.: On the superconformal index of Argyres–Douglas theories. J. Phys. A 49(1), 015401 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Creutzig, T., Frohlich, J., Kanade, S.: Representation theory of \(L\_k\left(\mathfrak{osp}(1 | 2)\right)\) from vertex tensor categories and Jacobi forms. Proc. Am. Math. Soc. 146(11), 4571–4589 (2018)

    MATH  Google Scholar 

  17. Creutzig, T., Gaiotto, D., Linshaw, A.R.: S-duality for the Large \(N = 4\) superconformal algebra. Commun. Math. Phys. 374(3), 1787–1808 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Creutzig, T., Kanade, S., Linshaw, A.R.: Simple current extensions beyond semi-simplicity. Commun. Contemp. Math. 22, 1950001 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Creutzig, T., Kanade, S., Linshaw, A.R., Ridout, D.: Schur–Weyl duality for Heisenberg cosets. Transform. Groups 24, 301–354 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Creutzig, T., Kanade, S., McRae, R.: Tensor categories for vertex operator superalgebra extensions. arXiv:1705.05017 (2017)

  21. Creutzig, T., Kanade, S., McRae, R.: Glueing vertex algebras. arXiv:1906.00119 [math.QA]

  22. Creutzig, T., Linshaw, A.R.: Cosets of affine vertex algebras inside larger structures. J. Algebra 517, 396–438 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Creutzig, T., Linshaw, A.R.: The super \(W_{1+\infty }\) algebra with integral central charge. Trans. Am. Math. Soc. 367(8), 5521–5551 (2015)

    MATH  Google Scholar 

  24. Creutzig, T., Linshaw, A.R.: Orbifolds of symplectic fermion algebras. Trans. Am. Math. Soc. 369(1), 467–494 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Creutzig, T., Feigin, B., Linshaw, A.R.: \(N=4\) superconformal algebras and diagonal cosets. International Mathematics Research Notices, rnaa078. arXiv:1910.01228 [math.RT]

  26. Creutzig, T., Linshaw, A.R.: Trialities of \({\cal{W}}\)-algebras. arXiv:2005.10234 [math.RT]

  27. Creutzig, T., Milas, A.: Higher rank partial and false theta functions and representation theory. Adv. Math. 314, 203–227 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Creutzig, T., McRae, R., Yang, J.: Direct limit completions of vertex tensor categories. arXiv:2006.09711 [math.QA]

  29. Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional level WZW models II. Nucl. Phys. B 875, 423–458 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Creutzig, T.: W-algebras for Argyres–Douglas theories. Eur. J. Math. 3(3), 659–690 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Cordova, C., Shao, S.-H.: Schur indices, BPS particles, and Argyres–Douglas theories. JHEP 01, 040 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Davydov, A., Müger, M., Nikshych, D., Ostrik, V.: The Witt group of non-degenerate braided fusion categories. J. Reine Angew. Math. 677, 135–177 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories, Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  34. Frenkel, E.: Lectures on the Langlands program and conformal field theory. In: Proceedings, Les Houches School of Physics: Frontiers in Number Theory, Physics and Geometry II: On Conformal Field Theories, Discrete Groups and Renormalization: Les Houches, France, March 9–21, 2003, pp. 387–533 (2007)

  35. Feigin, B.L., Semikhatov, A.M.: The \(s{\ell }{\circ }(2){\oplus } s{\ell }{\circ }(2)/ s{\ell }{\circ }(2)\) coset theory as a Hamiltonian reduction of \(D{\circ }(2|1;{\alpha })\). Nucl. Phys. B 610, 489–530 (2001)

    ADS  Google Scholar 

  36. Feigin, B.L., Tipunin, I.Y.: Logarithmic CFTs connected with simple Lie algebras (2010)

  37. Gaiotto, D.: S-duality of boundary conditions and the Geometric Langlands program. Proc. Symp. Pure Math. 98, 139–180 (2018)

    MathSciNet  Google Scholar 

  38. Gaiotto, D.: Twisted compactifications of 3d N = 4 theories and conformal blocks. JHEP 02, 061 (2019)

    ADS  MATH  Google Scholar 

  39. Gaitsgory, D.: Quantum Langlands Correspondence. arXiv:1601.05279 (2016)

  40. Gaitsgory, D.: Recent progress in geometric Langlands theory. arXiv:1606.09462 (2016)

  41. Gaiotto, D., Rapčák, M.: Vertex algebras at the corner. JHEP 01, 160 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Gukov, S., Witten, E.: Gauge Theory, Ramification, And The Geometric Langlands Program. arXiv:0612073 (2006)

  43. Gaiotto, D., Witten, E.: Supersymmetric boundary conditions in N = 4 super Yang–Mills theory. J. Stat. Phys. 135, 789–855 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Gaiotto, D., Witten, E.: Janus configurations, Chern–Simons couplings, and the theta-angle in N = 4 super Yang–Mills theory. JHEP 06, 097 (2010)

    ADS  MATH  Google Scholar 

  45. Gukov, S., Witten, E.: Rigid surface operators. Adv. Theor. Math. Phys. 14(1), 87–178 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Huang, Y.-Z., Kirillov, A., Lepowsky, J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337(3), 1143–1159 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Hwang, S., Rhedin, H.: The BRST formulation of G/H WZNW models. Nucl. Phys. B 406, 165–186 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Iohara, K., Koga, Y.: Representation Theory of the Virasoro Algebra. Springer Monographs in Mathematics. Springer, London (2011)

    MATH  Google Scholar 

  49. Kac, V.G., Möseneder Frajria, P., Papi, P., Xu, F.: Conformal embeddings and simple current extensions. Int. Math. Res. Not. IMRN 14, 5229–5288 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Kirillov Jr., A., Ostrik, V.: On a \(q\)-analogue of the McKay correspondence and the ADE classification of \(\mathfrak{sl}_2\) conformal field theories. Adv. Math. 171(2), 183–227 (2002)

    MathSciNet  MATH  Google Scholar 

  51. Karabali, D., Schnitzer, H.J.: BRST quantization of the gauged WZW action and coset conformal field theories. Nucl. Phys. B 329, 649–666 (1990)

    ADS  MathSciNet  Google Scholar 

  52. Kac, V.G., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185(2), 400–458 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Num. Theor. Phys. 1, 1–236 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Lentner, S.D.: Quantum groups and Nichols algebras acting on conformal field theories. arXiv:1702.06431 (2017)

  55. Lin, X.: Mirror extensions of rational vertex operator algebras. Trans. Am. Math. Soc. 369(6), 3821–3840 (2017)

    MathSciNet  MATH  Google Scholar 

  56. Metlitski, M.A.: \(S\)-duality of \(u(1)\) gauge theory with \(\theta =\pi \) on non-orientable manifolds: applications to topological insulators and superconductors. arXiv:1510.05663 (2015)

  57. Nekrasov, N., Witten, E.: The omega deformation, Branes, Integrability, and Liouville theory. JHEP 09, 092 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Ostrik, V., Sun, M.: Level-rank duality via tensor categories. Commun. Math. Phys. 326(1), 49–61 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

DG thanks S. Braverman, K. Costello, P. Yoo for many instructive conversations. TC appreciates various discussions with T. Arakawa and A. Linshaw on related topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Creutzig.

Additional information

Communicated by X. Yin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T. C. is supported by the Natural Sciences and Engineering Research Council of Canada (RES0020460). The research of D.G. is supported by the Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development & Innovation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creutzig, T., Gaiotto, D. Vertex Algebras for S-duality. Commun. Math. Phys. 379, 785–845 (2020). https://doi.org/10.1007/s00220-020-03870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03870-6

Navigation