Skip to main content
Log in

The role of vinyl terminated silanes for producing highly concentrated polystyrene slurries in a single step process

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Slurries with low viscosity and polystyrene (PS) nanoparticle concentration up to 52 wt.% have been synthesized in one-step process with no waste generation, by suspension polymerization and optimizing the concentration of dispersants (sodium dodecyl sulfate, SDS, and the cosurfactant, CS). The CS was manufactured in situ from tetraethyl orthosilicate (TEOS) and vinyltriethoxysilane (VTES). The incorporation of the CS on the PS polymer was confirmed by FT-IR, EDS, and TGA, observing the functionalization of PS nanoparticles with SiOH. Morphology and particle size of the dispersed solid, together with viscosity and stability of the polystyrene slurries (PSSs), were analyzed, finding an abrupt reduction of the viscosity for PSSs by combining SDS and CS. Addition of SDS and CS (3.0 and 1.5 wt.%, respectively) allowed to produce PSSs with improved stability (ζ = − 48.5 mV after 1 year), low viscosity (20.5 mPa·s at 25 °C), and Newtonian behavior, containing up to 40.0 wt.% of single-spherical PS nanoparticles (< 100 nm).

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Qiu Z, Ma X, Li P, Zhao X, Wright A (2017) Micro-encapsulated phase change material (MPCM) slurries: characterization and building applications. Renew Sust Energ Rev 77:246–262

    Google Scholar 

  2. Khalifeh M, Saasen A, Hodne H, Godøy R, Vrålstad T (2018) Geopolymers as an alternative for oil well cementing applications: a review of advantages and concerns. J Energy Resour Technol Trans ASME 140(9)

  3. Crespy D, Landfester K (2010) Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J Org Chem 6:1132–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang Q-S, Zhang L-Z, Liu R-T, Li S-C, Zhang Q-Q (2017) Grouting mechanism of quick setting slurry in rock fissure with consideration of viscosity variation with space. Tunnel Undergr Space Technol 70(Supplement C):262–273

    Google Scholar 

  5. Frizzi RP, Meyer ME, Zhou L (2004) Full scale field performance of drilled shafts constructed utilizing bentonite and polymer slurries. Geotechnical Special Publication

    Google Scholar 

  6. Bustamante M, Boato R (2005) Polymer slurry in large diameter pile drilling - case histories. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering: Geotechnology in Harmony with the Global Environment

    Google Scholar 

  7. Anon (1996) Dike rehabilitation uses unique polymer slurry. Public Works 127(4):53

    Google Scholar 

  8. Hui J, Zhu Y, Zhu C, Liu Y (2011) Dispersion characteristics of mirco diamond particle in aqueous system. Jingangshi yu Moliao Moju Gongcheng/Diamond Abrasives Eng 31(3):15–18

    CAS  Google Scholar 

  9. Singgih C, Handayani D, Setyawan A (2017) Assessing the durability of polymer modified asphalt emulsions slurry seal. IOP Conference Series: Materials Science and Engineering

    Google Scholar 

  10. Tsubaki J, Kato M, Miyazawa M, Kuma T, Mori H (2001) The effects of the concentration of a polymer dispersant on apparent viscosity and sedimentation behavior of dense slurries. Chem Eng Sci 56(9):3021–3026

    CAS  Google Scholar 

  11. Xie Z, Ma J, Xu Q, Huang Y, Cheng Y-B (2004) Effects of dispersants and soluble counter-ions on aqueous dispersibility of nano-sized zirconia powder. Ceram Int 30(2):219–224

    CAS  Google Scholar 

  12. Alvarado JL, Marsh C, Sohn C, Phetteplace G, Newell T (2007) Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux. Int J Heat Mass Transf 50(9–10):1938–1952

    Google Scholar 

  13. Yoo Y, Martinez C, Youngblood JP (2017) Synthesis and characterization of microencapsulated phase change materials with poly(urea-urethane) shells containing cellulose nanocrystals. ACS Appl Mater Interfaces 9(37):31763–31776

    CAS  PubMed  Google Scholar 

  14. Joseph M, Sajith V (2019) An investigation on heat transfer performance of polystyrene encapsulated n-octadecane based nanofluid in square channel. Appl Therm Eng 147:756–769

    CAS  Google Scholar 

  15. Ugelstad J, El-Aasser MS, Vanderhoff JW (1973) Emulsion polymerization: initiation of polymerization in monomer droplets. J Polym Sci Polym Lett Ed 11(8):503–513

    CAS  Google Scholar 

  16. Lee J, Lee SJ, Ahn KH (2015) Nanoparticle-induced gelation of bimodal slurries with highly size-asymmetric particles: effect of surface chemistry and concentration. Langmuir 31(51):13639–13646

    CAS  PubMed  Google Scholar 

  17. Yamamoto T, Takahashi Y (2018) Design of polymer particles maintaining dispersion stability for the synthesis of hollow silica particles through sol-gel reaction on polymer surfaces. Colloids Surf A Physicochem Eng Asp 553:66–70

    CAS  Google Scholar 

  18. Shin JH, Park JW, Kim HJ (2019) Clay-polystyrene nanocomposite from pickering emulsion polymerization stabilized by vinylsilane-functionalized montmorillonite platelets. Appl Clay Sci 182:105288

    CAS  Google Scholar 

  19. Davoodi S, Ramazani S. A A, Soleimanian A, Jahromi AF (2019) Application of a novel acrylamide copolymer containing highly hydrophobic comonomer as filtration control and rheology modifier additive in water-based drilling mud. J Pet Sci Eng 180:747–755

    CAS  Google Scholar 

  20. Chen Z, Zhao Y, Zhu X, Möller M (2019) Formation of monodisperse polymer@SiO2 core–shell nanoparticles via polymerization in emulsions stabilized by amphiphilic silica precursor polymers: HLB dictates the reaction mechanism and particle size. Macromolecules 52(15):5670–5678

    CAS  Google Scholar 

  21. Ishii H, Ishii M, Nagao D, Konno M (2014) Advanced synthesis for monodisperse polymer nanoparticles in aqueous media with sub-millimolar surfactants. Polymer 55(12):2772–2779

    CAS  Google Scholar 

  22. Ishii H, Kuwasaki N, Nagao D, Konno M (2015) Environmentally adaptable pathway to emulsion polymerization for monodisperse polymer nanoparticle synthesis. Polymer 77:64–69

    CAS  Google Scholar 

  23. Li J, Chen L, Li X, Zhang Z, Jiao C (2013) Preparation and characterization of a novel nanocomposite particles via in situ emulsion polymerization of vinyl functionalized silica nanoparticles and vinyl acetate. J Sol-Gel Sci Technol 68(1):54–59

    CAS  Google Scholar 

  24. Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44(17):6532–6549

    CAS  PubMed  Google Scholar 

  25. Meibodi ME, Vafaie-Sefti M, Rashidi AM, Amrollahi A, Tabasi M, Kalal HS (2010) The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nanofluids. Int Commun Heat Mass Transfer 37(3):319–323

    CAS  Google Scholar 

  26. Fedele L, Colla L, Bobbo S, Barison S, Agresti F (2011) Experimental stability analysis of different water-based nanofluids. Nanoscale Res Lett 6(1):1–8

    Google Scholar 

  27. Bondi CAM, Marks JL, Wroblewski LB, Raatikainen HS, Lenox SR, Gebhardt KE (2015) Human and environmental toxicity of sodium lauryl sulfate (SLS): evidence for safe use in household cleaning products. Environ Health Insights 9:27–32

    PubMed  PubMed Central  Google Scholar 

  28. van Os NM, Haak JR, Rupert LAM (1993) Physico-chemical properties of selected anionic, cationic and nonionic surfactants. Elservier Science Publishers, B. V.

  29. Kim S, Tserengombo B, Choi S-H, Noh J, Huh S, Choi B, Chung H, Kim J, Jeong H (2018) Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial. Int Commun Heat Mass Transfer 91:95–102

    CAS  Google Scholar 

  30. Yousefvand HA, Jafari A (2018) Stability and flooding analysis of nanosilica/ NaCl /HPAM/SDS solution for enhanced heavy oil recovery. J Pet Sci Eng 162:283–291

    CAS  Google Scholar 

  31. Somasundaran P, Mehta SC, Yu X, Krishnakumar S (2008) Chapter 6 “Colloid systems and interfaces stability of dispersions through polymer and surfactant adsorption”. In: Birdi KS (ed) Handbook of surface and colloid chemistry. CRC Press

  32. Chadha R, Sharma R, Maiti N, Ballal A, Kapoor S (2015) Effect of SDS concentration on colloidal suspensions of Ag and Au nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 150:664–670

    CAS  PubMed  Google Scholar 

  33. CIR, Cosmetic Ingredient Review (CIR) (1983) Final report on the safety assessment of sodium lauryl sulfate and ammonium lauryl sulfate, in Journal of the American College of Toxicology. SAGE Publications, p 127-181

  34. CIR, Cosmetic Ingredient Review (CIR) (2005) Final report on the safety assessment of sodium lauryl sulfate and ammonium lauryl sulfate, in Journal of the American College of Toxicology. Sage Publications, p 1–102

  35. P&G, Proctor & Gamble (P&G) (2015) Safety Data Sheets. Available at: http://www.pgproductsafety.com/productsafety

  36. SG, Seventh Generation (2015) Material Safety Data Sheets. Available at: http://www.seventhgeneration.com/material-safety-data-sheets

  37. Steber J, Wiebel F (2011) Laundry Detergents, 4. Ecology and Toxicology. Ullmann’s Encyclopedia of Industrial Chemistry

  38. Luther EP, Lange FF, Pearson DS, Colic M (1999) Development of short-range repulsive potentials by short-chain surfactants in aqueous slurries. J Am Ceram Soc 82(1):74–80

    CAS  Google Scholar 

  39. Kelley EL, Herzberg WJ, Sinka JV (1984) Carbonaceous oil slurries stabilized by binary surfactant mixtures. Patent Number 4:478,602

    Google Scholar 

  40. Palla BJ, Shah DO (2000) Stabilization of high ionic strength slurries using the synergistic effects of a mixed surfactant system. J Colloid Interface Sci 223:102–111

    CAS  PubMed  Google Scholar 

  41. Xin X, Zhang H, Xu G, Tan Y, Zhang J, Lv X (2013) Influence of CTAB and SDS on the properties of oil-in-water nano-emulsion with paraffin and span 20/Tween 20. Colloids Surf A Physicochem Eng Asp 418:60–67

    CAS  Google Scholar 

  42. Solè I, Solans C, Maestro A, González C, Gutiérrez JM (2012) Study of nano-emulsion formation by dilution of microemulsions. J Colloid Interface Sci 376:133–139

    PubMed  Google Scholar 

  43. Cid A, Moldes OA, Mejuto JC, Simal-Gandara J (2019) Interaction of caffeic acid with SDS micellar aggregates. Molecules 24:04–04

    Google Scholar 

  44. Izarra I, Simón D, Molina M, Rodríguez JF, Carmona M (2019) Synthesis of trifunctional graft polymer polyether polyols employing a silica based gel as non-aqueous dispersant. Eur Polym J 115:298–312

    CAS  Google Scholar 

  45. Sánchez-Silva L, Tsavalas J, Sundberg D, Sánchez P, Rodriguez JF (2010) Synthesis and characterization of paraffin wax microcapsules with acrylic-based polymer shells. Ind Eng Chem Res 49(23):12204–12211

    Google Scholar 

  46. Borreguero AM, Carmona M, Sanchez ML, Valverde JL, Rodriguez JF (2010) Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio. Appl Therm Eng 30(10):1164–1169

    CAS  Google Scholar 

  47. Alcázar Á, Garrido I, García EM, De Lucas A, Carmona M, Rodriguez JF (2015) New type of highly selective microcapsules for the removal of mercury from surface polluted waters. Sep Purif Technol 154:255–262

    Google Scholar 

  48. Alcázar A, Carmona M, Borreguero AM, De Lucas A, Rodríguez JF (2015) Synthesis of microcapsules containing different extractant agents. J Microencapsul 32(7):642–649

    PubMed  Google Scholar 

  49. Alcázar Á, Borreguero AM, de Lucas A, Rodríguez JF, Carmona M (2017) Microencapsulation of TOMAC by suspension polymerisation: process optimisation. Chem Eng Res Des 117:1–10

    Google Scholar 

  50. Sánchez-Silva L, Rodríguez JF, Romero A, Sánchez P (2012) Preparation of coated thermo-regulating textiles using Rubitherm-RT31 microcapsules. J Appl Polym Sci 124(6):4809–4818

    Google Scholar 

  51. Sánchez-Silva L, Rodríguez JF, Sánchez P (2011) Influence of different suspension stabilizers on the preparation of Rubitherm RT31 microcapsules. Colloids Surf A Physicochem Eng Asp 390(1–3):62–66

    Google Scholar 

  52. Sánchez-Silva L, Carmona M, De Lucas A, Sánchez P, Rodríguez JF (2010) Scale-up of a suspension-like polymerization process for the microencapsulation of phase change materials. J Microencapsul 27(7):583–593

    PubMed  Google Scholar 

  53. Sánchez L, Sánchez P, Carmona M, de Lucas A, Rodríguez JF (2008) Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization. Colloid Polym Sci 286(8–9):1019–1027

    Google Scholar 

  54. ISO (1996) International Standard ISO13321. Methods for determination of particle size distribution part 8: photon correlation spectrocopy

  55. ISO (2008) International Standard ISO22412. Particle size analysis - dynamic light scattering

  56. Greenwood R, Kendall K (1999) Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis. J Eur Ceram Soc 19(4):479–488

    CAS  Google Scholar 

  57. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    CAS  PubMed  Google Scholar 

  58. Hanaor D, Michelazzi M, Leonelli C, Sorrell CC (2012) The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceram Soc 32(1):235–244

    CAS  Google Scholar 

  59. Kumar A, Dixit CK (2017) Methods for characterization of nanoparticles. Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Elsevier Inc., pp 44–58

  60. Williams RJ, Phillips JN, Mysele KJ (1955) The critical micelle concentration of sodium lauryl sulphate at 25° C. Trans Faraday Soc 51:728–737

    CAS  Google Scholar 

  61. Dominguez A, Fernandez A, Gonzalez N, Iglesias E, Montenegro L (1997) Determination of critical micelle concentration of some surfactants by three techniques. J Chem Educ 74(10):1227–1231

    CAS  Google Scholar 

  62. EU (2011) European Union (EU) Directive 2011/696EU. Comission Recommendation of 18 October 2011 on the definition of nanomaterial

  63. ISO (2015) International Standard ISO/TS 80004–1. Nanotechnologies - Vocabulary - Part 1: Core terms

  64. Milošević I, Mauroy V, Dabboue H, Serieye S, Warmont F, Salvetat JP, Saboungi ML, Guillot S (2009) Synthesis and size control of polystyrene nanoparticles via "liquid crystalline" nanoemulsion. Microporous Mesoporous Mater 120(1–2):7–11

    Google Scholar 

  65. Nuruzatulifah AM, Nizam AA, Ain NMN (2016) Synthesis and characterization of polystyrene nanoparticles with covalently attached fluorescent dye. Mater Today Proc 3:S112–S119

    Google Scholar 

  66. Antonietti M, Bremser W, Müschenborn D, Rosenauer C, Schupp B, Schmidt M (1991) Synthesis and size control of polystyrene latices via polymerization in microemulsion. Macromolecules 24(25):6636–6643

    CAS  Google Scholar 

  67. Distler D, Neto WS, Machado F (2017) Emulsion Polymerization. Reference Module in Materials Science and Materials Engineering. Elsevier

  68. Chigwada G, Kandare E, Wang D, Majoni S, Mlambo D, Wilkie CA, Hossenlopp JM (2008) Thermal stability and degradation kinetics of polystyrene/organically- modified montmorillonite nanocomposites. J Nanosci Nanotechnol 8(4):1927–1936

    CAS  PubMed  Google Scholar 

  69. Izarra I, Cubillo J, Serrano A, Rodriguez JF, Carmona M (2019) A hydrophobic release agent containing SiO2-CH3 submicron-sized particles for waterproofing mortar structures. Constr Build Mater 199:30–39

    CAS  Google Scholar 

  70. Launer P, Arkles B (2013) Infrared analysis of organosilicon compounds, pp 175–178

    Google Scholar 

  71. Lee J, Hong CK, Choe S, Shim SE (2007) Synthesis of polystyrene/silica composite particles by soap-free emulsion polymerization using positively charged colloidal silica. J Colloid Interface Sci 310(1):112–120

    CAS  PubMed  Google Scholar 

  72. Mangesana N, Chikuku RS, Mainza AN, Govender I, Van Der Westhuizen AP, Narashima M (2008) The effect of particle sizes and solids concentration on the rheology of silica sand based suspensions. J South Afr Inst Min Metall 108(4):237–243

    CAS  Google Scholar 

Download references

Funding

Authors gratefully received financial support from the Spanish Ministry of Science, Innovation and Universities due to the project TRANSENERGY (RTI2018-100745-B-I00) and the fellowship for PhD studies (FPU16/02345) of D. López-Pedrajas; F.J. Ramos also received financial support from JCCM and FEDER for the research project GTSOL (Ref. SBPLY/17/180501/000554).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Juan Francisco Rodríguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Pedrajas, D., Borreguero, A.M., Ramos, F.J. et al. The role of vinyl terminated silanes for producing highly concentrated polystyrene slurries in a single step process. Colloid Polym Sci 298, 1685–1697 (2020). https://doi.org/10.1007/s00396-020-04754-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04754-w

Keywords

Navigation